1.
|
McDonald JW and Sadowsky C: Spinal-cord
injury. Lancet. 359:417–425. 2002. View Article : Google Scholar
|
2.
|
Andersson U, Wang H, Palmblad K, et al:
High mobility group 1 protein (HMG-1) stimulates proinflammatory
cytokine synthesis in human monocytes. J Exp Med. 192:565–570.
2000. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Ao Q, Wang AJ, Chen GQ, Wang SJ, Zuo HC
and Zhang XF: Combined transplantation of neural stem cells and
olfactory ensheathing cells for the repair of spinal cord injuries.
Med Hypotheses. 69:1234–1237. 2007. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Rosenfeld JV, Bandopadhayay P,
Goldschlager T and Brown DJ: The ethics of the treatment of spinal
cord injury: stem cell transplants, motor neuroprosthetics, and
social equity. Top Spinal Cord Inj Rehabil. 14:76–88. 2008.
View Article : Google Scholar : PubMed/NCBI
|
5.
|
Gupta R, Bathen ME, Smith JS, Levi AD,
Bhatia NN and Steward O: Advances in the management of spinal cord
injury. J Am Acad Orthop Surg. 18:210–222. 2010.
|
6.
|
Choi D, Law S, Raisman G and Li D:
Olfactory ensheathing cells in the nasal mucosa of the rat and
human. Br J Neurosurg. 22:301–302. 2008. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Couzin J: Biotechnology. Celebration and
concern over US trial of embryonic stem cells. Science.
323:5682009. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Iwatsuki K, Yoshimine T, Kishima H, et al:
Transplantation of olfactory mucosa following spinal cord injury
promotes recovery in rats. Neuroreport. 19:1249–1252. 2008.
View Article : Google Scholar : PubMed/NCBI
|
9.
|
Li Y, Yamamoto M, Raisman G, Choi D and
Carlstedt T: An experimental model of ventral root repair showing
the beneficial effect of transplanting olfactory ensheathing cells.
Neurosurgery. 60:734–741. 2007.PubMed/NCBI
|
10.
|
Lima C, Pratas-Vital J, Escada P,
Hasse-Ferreira A, Capucho C and Peduzzi JD: Olfactory mucosa
autografts in human spinal cord injury: a pilot clinical study. J
Spinal Cord Med. 29:191–206. 2006.PubMed/NCBI
|
11.
|
Okano H: Strategies toward
CNS-regeneration using induced pluripotent stem cells. Genome
Inform. 23:217–220. 2009. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Raisman G: Repair of spinal cord injury by
transplantation of olfactory ensheathing cells. C R Biol.
330:557–560. 2007. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Raisman G and Li Y: Repair of neural
pathways by olfactory ensheathing cells. Nat Rev Neurosci.
8:312–319. 2007. View
Article : Google Scholar : PubMed/NCBI
|
14.
|
Tsuji O, Miura K, Okada Y, et al:
Therapeutic potential of appropriately evaluated safe-induced
pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci
USA. 107:12704–12709. 2010. View Article : Google Scholar : PubMed/NCBI
|
15.
|
Zurita M and Vaquero J: Functional
recovery in chronic paraplegia after bone marrow stromal cell
transplantation. Neuroreport. 15:1105–1108. 2004. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Agresti A and Bianchi ME: HMGB proteins
and gene expression. Curr Opin Genet Dev. 13:170–178. 2003.
View Article : Google Scholar
|
17.
|
Dumitriu IE, Baruah P, Valentinis B, et
al: Release of high mobility group box 1 by dendritic cells
controls T cell activation via the receptor for advanced glycation
end products. J Immunol. 174:7506–7515. 2005. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Inoue K, Kawahara K, Biswas KK, et al:
HMGB1 expression by activated vascular smooth muscle cells in
advanced human atherosclerosis plaques. Cardiovasc Pathol.
16:136–143. 2007. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Ito T, Kawahara K, Nakamura T, et al:
High-mobility group box 1 protein promotes development of
microvascular thrombosis in rats. J Thromb Haemost. 5:109–116.
2007. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Morimoto Y, Kawahara KI, Tancharoen S, et
al: Tumor necrosis factor-alpha stimulates gingival epithelial
cells to release high mobility-group box 1. J Period Res. 43:76–83.
2008. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Rovere-Querini P, Capobianco A, Scaffidi
P, et al: HMGB1 is an endogenous immune adjuvant released by
necrotic cells. EMBO Rep. 5:825–830. 2004. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Scaffidi P, Misteli T and Bianchi ME:
Release of chromatin protein HMGB1 by necrotic cells triggers
inflammation. Nature. 418:191–195. 2002. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Taniguchi N, Kawahara K, Yone K, et al:
High mobility group box chromosomal protein 1 plays a role in the
pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis
Rheum. 48:971–981. 2003. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Yang D, Chen Q, Yang H, Tracey KJ, Bustin
M and Oppenheim JJ: High mobility group box-1 protein induces the
migration and activation of human dendritic cells and acts as an
alarmin. J Leukocyte Biol. 81:59–66. 2007. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Park JS, Gamboni-Robertson F, He Q, et al:
High mobility group box 1 protein interacts with multiple Toll-like
receptors. Am J Physiol. 290:C917–C924. 2006. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Park JS, Svetkauskaite D, He Q, et al:
Involvement of toll-like receptors 2 and 4 in cellular activation
by high mobility group box 1 protein. J Biol Chem. 279:7370–7377.
2004. View Article : Google Scholar : PubMed/NCBI
|
27.
|
Hori O, Brett J, Slattery T, et al: The
receptor for advanced glycation end products (RAGE) is a cellular
binding site for amphoterin. Mediation of neurite outgrowth and
co-expression of rage and amphoterin in the developing nervous
system. J Biol Chem. 270:25752–25761. 1995. View Article : Google Scholar : PubMed/NCBI
|
28.
|
Kokkola R, Andersson A, Mullins G, et al:
RAGE is the major receptor for the proinflammatory activity of
HMGB1 in rodent macrophages. Scand J Immunol. 61:1–9. 2005.
View Article : Google Scholar : PubMed/NCBI
|
29.
|
Wang H, Bloom O, Zhang M, et al: HMG-1 as
a late mediator of endotoxin lethality in mice. Science.
285:248–251. 1999. View Article : Google Scholar : PubMed/NCBI
|
30.
|
Dumitriu IE, Baruah P, Manfredi AA,
Bianchi ME and Rovere-Querini P: HMGB1: guiding immunity from
within. Trends Immunol. 26:381–387. 2005. View Article : Google Scholar : PubMed/NCBI
|
31.
|
Goldstein RS, Gallowitsch-Puerta M, Yang
L, et al: Elevated high-mobility group box 1 levels in patients
with cerebral and myocardial ischemia. Shock. 25:571–574. 2006.
View Article : Google Scholar : PubMed/NCBI
|
32.
|
Kikuchi K, Kawahara K, Biswas KK, et al:
Minocycline attenuates both OGD-induced HMGB1 release and
HMGB1-induced cell death in ischemic neuronal injury in PC12 cells.
Biochem Biophys Res Commun. 385:132–136. 2009. View Article : Google Scholar : PubMed/NCBI
|
33.
|
Kikuchi K, Kawahara K, Tancharoen S, et
al: The free radical scavenger edaravone rescues rats from cerebral
infarction by attenuating the release of high-mobility group box-1
in neuronal cells. J Pharmacol Exper Ther. 329:865–874. 2009.
View Article : Google Scholar : PubMed/NCBI
|
34.
|
Kim JB, Sig Choi J, Yu YM, et al: HMGB1, a
novel cytokine-like mediator linking acute neuronal death and
delayed neuroinflammation in the postischemic brain. J Neurosci.
26:6413–6421. 2006. View Article : Google Scholar : PubMed/NCBI
|
35.
|
Lindstrom O, Tukiainen E, Kylanpaa L, et
al: Circulating levels of a soluble form of receptor for advanced
glycation end products and high-mobility group box chromosomal
protein 1 in patients with acute pancreatitis. Pancreas.
38:e215–e220. 2009. View Article : Google Scholar
|
36.
|
Liu K, Mori S, Takahashi HK, et al:
Anti-high mobility group box 1 monoclonal antibody ameliorates
brain infarction induced by transient ischemia in rats. FASEB J.
21:3904–3916. 2007. View Article : Google Scholar : PubMed/NCBI
|
37.
|
Lotze MT and Tracey KJ: High-mobility
group box 1 protein (HMGB1): nuclear weapon in the immune arsenal.
Nat Rev. 5:331–342. 2005.PubMed/NCBI
|
38.
|
Nakahara T, Tsuruta R, Kaneko T, et al:
High-mobility group box 1 protein in CSF of patients with
subarachnoid hemorrhage. Neurocrit Care. 11:362–368. 2009.
View Article : Google Scholar : PubMed/NCBI
|
39.
|
Qiu J, Nishimura M, Wang Y, et al: Early
release of HMGB-1 from neurons after the onset of brain ischemia. J
Cereb Blood Flow Metab. 28:927–938. 2008. View Article : Google Scholar : PubMed/NCBI
|
40.
|
Takano K, Shinoda M, Tanabe M, et al:
Protective effect of high-mobility group box 1 blockade on acute
liver failure in rats: (HMGB1 blockade for rat acute liver
failure). Shock. 34:573–579. 2010. View Article : Google Scholar : PubMed/NCBI
|
41.
|
Ulloa L and Messmer D: High-mobility group
box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev.
17:189–201. 2006. View Article : Google Scholar : PubMed/NCBI
|
42.
|
Van Zoelen MA, Ishizaka A, Wolthuls EK,
Choi G, van der Poll T and Schultz MJ: Pulmonary levels of
high-mobility group box 1 during mechanical ventilation and
ventilator-associated pneumonia. Shock. 29:441–445. 2008.PubMed/NCBI
|
43.
|
Kohno T, Anzai T, Naito K, et al: Role of
high-mobility group box 1 protein in post-infarction healing
process and left ventricular remodelling. Cardiovasc Res.
81:565–573. 2009. View Article : Google Scholar : PubMed/NCBI
|
44.
|
Maeda S, Hikiba Y, Shibata W, et al:
Essential roles of high-mobility group box 1 in the development of
murine colitis and colitis-associated cancer. Biochem Biophys Res
Commun. 360:394–400. 2007. View Article : Google Scholar : PubMed/NCBI
|
45.
|
Sawa H, Ueda T, Takeyama Y, et al:
Blockade of high mobility group box-1 protein attenuates
experimental severe acute pancreatitis. World J Gastroenterol.
12:7666–7670. 2006.PubMed/NCBI
|
46.
|
Ulloa L, Batliwalla FM, Andersson U,
Gregersen PK and Tracey KJ: High mobility group box chromosomal
protein 1 as a nuclear protein, cytokine, and potential therapeutic
target in arthritis. Arthritis Rheum. 48:876–881. 2003. View Article : Google Scholar : PubMed/NCBI
|
47.
|
Watanabe T, Kubota S, Nagaya M, et al: The
role of HMGB-1 on the development of necrosis during hepatic
ischemia and hepatic ischemia/reperfusion injury in mice. J Surg
Res. 124:59–66. 2005. View Article : Google Scholar : PubMed/NCBI
|
48.
|
Yang R, Harada T, Mollen KP, et al:
Anti-HMGB1 neutralizing antibody ameliorates gut barrier
dysfunction and improves survival after hemorrhagic shock. Mol Med.
12:105–114. 2006. View Article : Google Scholar : PubMed/NCBI
|
49.
|
Bianchi ME: DAMPs, PAMPs and alarmins: all
we need to know about danger. J Leukocyte Biol. 81:1–5. 2007.
View Article : Google Scholar : PubMed/NCBI
|
50.
|
Oppenheim JJ and Yang D: Alarmins:
chemotactic activators of immune responses. Curr Opin Immunol.
17:359–365. 2005. View Article : Google Scholar : PubMed/NCBI
|
51.
|
Esposito E, Genovese T, Caminiti R,
Bramanti P, Meli R and Cuzzocrea S: Melatonin reduces
stress-activated/mitogen-activated protein kinases in spinal cord
injury. J Pineal Res. 46:79–86. 2009. View Article : Google Scholar : PubMed/NCBI
|
52.
|
Kawabata H, Setoguchi T, Yone K, et al:
High mobility group box 1 is upregulated after spinal cord injury
and is associated with neuronal cell apoptosis. Spine.
35:1109–1115. 2010.PubMed/NCBI
|
53.
|
Huang Y, Xie K, Li J, et al: Beneficial
effects of hydrogen gas against spinal cord ischemia-reperfusion
injury in rabbits. Brain Res. 1378:125–136. 2010. View Article : Google Scholar : PubMed/NCBI
|
54.
|
Wang Q, Ding Q, Zhou Y, et al: Ethyl
pyruvate attenuates spinal cord ischemic injury with a wide
therapeutic window through inhibiting high-mobility group box 1
release in rabbits. Anesthesiology. 110:1279–1286. 2009. View Article : Google Scholar : PubMed/NCBI
|
55.
|
Faraco G, Fossati S, Bianchi ME, et al:
High mobility group box 1 protein is released by neural cells upon
different stresses and worsens ischemic neurodegeneration in vitro
and in vivo. J Neurochem. 103:590–603. 2007. View Article : Google Scholar : PubMed/NCBI
|
56.
|
Crowe MJ, Bresnahan JC, Shuman SL, Masters
JN and Beattie MS: Apoptosis and delayed degeneration after spinal
cord injury in rats and monkeys. Nat Med. 3:73–76. 1997. View Article : Google Scholar : PubMed/NCBI
|
57.
|
Johnson LV, Leitner WP, Rivest AJ, Staples
MK, Radeke MJ and Anderson DH: The Alzheimer’s A beta-peptide is
deposited at sites of complement activation in pathologic deposits
associated with aging and age-related macular degeneration. Proc
Natl Acad Sci USA. 99:11830–11835. 2002.
|
58.
|
Huang Y, Yin H, Han J, et al:
Extracellular HMGB1 functions as an innate immune-mediator
implicated in murine cardiac allograft acute rejection. Am J
Transplant. 7:799–808. 2007. View Article : Google Scholar : PubMed/NCBI
|
59.
|
Moser B, Szabolcs MJ, Ankersmit HJ, et al:
Blockade of RAGE suppresses alloimmune reactions in vitro and
delays allograft rejection in murine heart transplantation. Am J
Transplant. 7:293–302. 2007. View Article : Google Scholar : PubMed/NCBI
|
60.
|
Kao YH, Jawan B, Goto S, et al:
High-mobility group box 1 protein activates hepatic stellate cells
in vitro. Transplant Proc. 40:2704–2705. 2008. View Article : Google Scholar : PubMed/NCBI
|
61.
|
Matsuoka N, Itoh T, Watarai H, et al:
High-mobility group box 1 is involved in the initial events of
early loss of transplanted islets in mice. J Clin Invest.
120:735–743. 2010. View Article : Google Scholar : PubMed/NCBI
|