1.
|
Pisani P, Parkin DM and Ferlay J:
Estimates of the worldwide mortality from eighteen major cancers in
1985. Implications for prevention and projections of future burden.
Int J Cancer. 55:891–903. 1993. View Article : Google Scholar : PubMed/NCBI
|
2.
|
Sarbia M, Verreet P, Bittinger F,
Dutkowski P, Heep H, Willers R and Gabbert HE: Basaloid squamous
cell carcinoma of the esophagus: diagnosis and prognosis. Cancer.
79:1871–1878. 1997. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Hu J, Li R, Sun L and Ni Y: Influence of
esophageal carcinoma operations on gastroesophageal reflux. Ann
Thorac Surg. 78:298–302. 2004. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Shan W, Yang G and Liu J: The inflammatory
network: bridging senescent stroma and epithelial tumorigenesis.
Front Biosci. 14:4044–4057. 2009. View
Article : Google Scholar : PubMed/NCBI
|
5.
|
Stein GH and Dulic V: Origins of G1 arrest
in senescent human fibroblasts. Bioessays. 17:537–543. 1995.
View Article : Google Scholar : PubMed/NCBI
|
6.
|
Hayflick L: Theories of biological aging.
Exp Gerontol. 20:145–159. 1985. View Article : Google Scholar
|
7.
|
Oller AR, Rastogi P, Morgenthaler S and
Thilly WG: A statistical model to estimate variance in long
term-low dose mutation assays: testing of the model in a human
lymphoblastoid mutation ssay. Mutat Res. 216:149–161. 1989.
View Article : Google Scholar : PubMed/NCBI
|
8.
|
Jackson AL and Loeb LA: The mutation rate
and cancer. Genetics. 148:1483–1490. 1998.PubMed/NCBI
|
9.
|
Bissell MJ and Labarge MA: Context, tissue
plasticity, and cancer: are tumor stem cells also regulated by the
microenvironment. Cancer Cell. 7:17–23. 2005.PubMed/NCBI
|
10.
|
Rosu-Myles M and Wolff L: p15Ink4b: dual
function in myelopoiesis and inactivation in myeloid disease. Blood
Cells Mol Dis. 40:406–409. 2008. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Zhang Z, Rosen DG, Yao JL, Huang J and Liu
J: Expression of p14ARF, p15INK4b, p16INK4a, and DCR2 increases
during prostate cancer progression. Mod Pathol. 19:1339–1343. 2006.
View Article : Google Scholar : PubMed/NCBI
|
12.
|
Zindy F, Quelle DE, Roussel MF and Sherr
CJ: Expression of the p16INK4a tumor suppressor versus other INK4
family members during mouse development and aging. Oncogene.
15:203–211. 1997. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Shapiro GI, Edwards CD, Ewen ME and
Rollins BJ: p16INK4A participates in a G1 arrest checkpoint in
response to DNA damage. Mol Cell Biol. 18:378–387. 1998.PubMed/NCBI
|
14.
|
Stone S, Dayananth P, Jiang P,
Weaver-Feldhaus JM, Tavtigian SV, Cannon-Albright L and Kamb A:
Genomic structure, expression and mutational analysis of the P15
(MTS2) gene. Oncogene. 11:987–991. 1995.PubMed/NCBI
|
15.
|
Fukai K, Yokosuka O, Imazeki F, Tada M,
Mikata R, Miyazaki M, Ochiai T and Saisho H: Methylation status of
p14ARF, p15INK4b, and p16INK4a genes in human hepatocellular
carcinoma. Liver Int. 25:1209–1216. 2005. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Collado M, Blasco MA and Serrano M:
Cellular senescence in cancer and aging. Cell. 130:223–233. 2007.
View Article : Google Scholar : PubMed/NCBI
|
17.
|
Rinehart CA and Torti VR: Aging and
cancer: the role of stromal interactions with epithelial cells. Mol
Carcinog. 18:187–192. 1997. View Article : Google Scholar : PubMed/NCBI
|
18.
|
Beck JC, Hosick HL and Watkins BA: Growth
of epithelium from a preneoplastic mammary outgrowth in response to
mammary adipose tissue. In Vitro Cell Dev Biol. 25:409–418. 1989.
View Article : Google Scholar : PubMed/NCBI
|
19.
|
Hayashi N and Cunha GR: Mesenchyme-induced
changes in the neoplastic characteristics of the Dunning prostatic
adenocarcinoma. Cancer Res. 51:4924–4930. 1991.PubMed/NCBI
|
20.
|
Li TY, Xu LY, Wu ZY, Liao LD, Shen JH, Xu
XE, Du ZP, Zhao Q and Li EM: Reduced nuclear and ectopic
cytoplasmic expression of lysyl oxidase-like 2 is associated with
lymph node metastasis and poor prognosis in esophageal squamous
cell carcinoma. Hum Pathol. Dec 26–2011, (Epub ahead of print).
|
21.
|
Yang GZ, Li L, Ding HY and Zhou JS:
Cyclooxygenase-2 is over-expressed in Chinese esophageal squamous
cell carcinoma, and correlated with NF-kappaB: an
immunohistochemical study. Exp Mol Pathol. 79:214–218. 2005.
View Article : Google Scholar : PubMed/NCBI
|
22.
|
Grace VM, Shalini JV, lekha TT, Devaraj SN
and Devaraj H: Co-overexpression of p53 and bcl-2 proteins in
HPV-induced squamous cell carcinoma of the uterine cervix. Gynecol
Oncol. 91:51–58. 2003. View Article : Google Scholar : PubMed/NCBI
|
23.
|
DePinho RA: The age of cancer. Nature.
408:248–254. 2000. View
Article : Google Scholar
|
24.
|
Zheng WQ, Zheng JM, Ma R, Meng FF and Ni
CR: Relationship between levels of Skp2 and P27 in breast
carcinomas and possible role of Skp2 as targeted therapy. Steroids.
70:770–774. 2005. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Gil J and Peters G: Regulation of the
INK4b-ARF-INK4a tumour suppressor locus: all for one or one for
all. Nat Rev Mol Cell Biol. 7:667–677. 2006. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Kim WY and Sharpless NE: The regulation of
INK4/ARF in cancer and aging. Cell. 127:265–275. 2006. View Article : Google Scholar : PubMed/NCBI
|
27.
|
Collado M, Gil J, Efeyan A, Guerra C,
Schuhmacher AJ, Barradas M, Benguria A, Zaballos A, Flores JM,
Barbacid M, et al: Tumour biology: senescence in premalignant
tumours. Nature. 436:6422005. View Article : Google Scholar : PubMed/NCBI
|
28.
|
Jin M, Piao Z, Kim NG, Park C, Shin EC,
Park JH, Jung HJ, Kim CG and Kim H: p16 is a major inactivation
target in hepato-cellular carcinoma. Cancer. 89:60–68. 2000.
View Article : Google Scholar : PubMed/NCBI
|
29.
|
Forbes S, Clements J, Dawson E, Bamford S,
Webb T, Dogan A, Flanagan A, Teague J, Wooster R, Futreal PA and
Stratton MR: COSMIC 2005. Br J Cancer. 94:318–322. 2006. View Article : Google Scholar
|
30.
|
Esteller M, Corn PG, Baylin SB and Herman
JG: A gene hyper-methylation profile of human cancer. Cancer Res.
61:3225–3229. 2001.PubMed/NCBI
|
31.
|
Sano T, Masuda N, Oyama T and Nakajima T:
Overexpression of p16 and p14ARF is associated with human
papillomavirus infection in cervical squamous cell carcinoma and
dysplasia. Pathol Int. 52:375–383. 2002. View Article : Google Scholar : PubMed/NCBI
|
32.
|
Li TY, Xu LY, Wu ZY, Liao LD, Shen JH, Xu
XE, Du ZP, Zhao Q and Li EM: Reduced nuclear and ectopic
cytoplasmic expression of lysyl oxidase-like 2 is associated with
lymph node metastasis and poor prognosis in esophageal squamous
cell carcinoma. Hum Pathol. Dec 26–2011.(Epub ahead of print).
|
33.
|
Meng RD, McDonald ER 3rd, Sheikh MS,
Fornace AJ Jr and El-Deiry WS: The TRAIL decoy receptor TRUNDD
(DcR2, TRAIL-R4) is induced by adenovirus-p53 overexpression and
can delay TRAIL-, p53-, and KILLER/DR5-dependent colon cancer
apoptosis. Mol Ther. 1:130–144. 2000. View Article : Google Scholar : PubMed/NCBI
|
34.
|
Schwarze SR, Shi Y, Fu VX, Watson PA and
Jarrard DF: Role of cyclin-dependent kinase inhibitors in the
growth arrest at senescence in human prostate epithelial and
uroepithelial cells. Oncogene. 20:8184–8192. 2001. View Article : Google Scholar : PubMed/NCBI
|
35.
|
Roberson RS, Kussick SJ, Vallieres E, Chen
SY and Wu DY: Escape from therapy-induced accelerated cellular
senescence in p53-null lung cancer cells and in human lung cancers.
Cancer Res. 65:2795–2803. 2005. View Article : Google Scholar : PubMed/NCBI
|
36.
|
Wang Z, Gao D, Fukushima H, Inuzuka H, Liu
P, Wan L, Sarkar FH and Wei W: Skp2: A novel potential therapeutic
target for prostate cancer. Biochim Biophys Acta. 1825:11–7.
2012.PubMed/NCBI
|
37.
|
Mani A and Gelmann EP: The
ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol.
23:4776–4789. 2005. View Article : Google Scholar : PubMed/NCBI
|
38.
|
Dowen SE, Scott A, Mukherjee G and Stanley
MA: Overexpression of Skp2 in carcinoma of the cervix does not
correlate inversely with p27 expression. Int J Cancer. 105:326–330.
2003. View Article : Google Scholar : PubMed/NCBI
|
39.
|
Gerdes J, Lemke H, Baisch H, Wacker HH,
Schwab U and Stein H: Cell cycle analysis of a cell
proliferation-associated human nuclear antigen defined by the
monoclonal antibody Ki-67. J Immunol. 133:1710–1715.
1984.PubMed/NCBI
|
40.
|
Gerdes J: Ki-67 and other proliferation
markers useful for immunohistological diagnostic and prognostic
evaluations in human malignancies. Semin Cancer Biol. 1:199–206.
1990.PubMed/NCBI
|
41.
|
Gerdes J, Li L, Schlueter C, Duchrow M,
Wohlenberg C, Gerlach C, Stahmer I, Kloth S, Brandt E and Flad HD:
Immunobiochemical and molecular biologic characterization of the
cell proliferation-associated nuclear antigen that is defined by
monoclonal antibody Ki-67. Am J Pathol. 138:867–873. 1991.
|
42.
|
Reed JC: Bcl-2 and the regulation of
programmed cell death. J Cell Biol. 124:1–6. 1994. View Article : Google Scholar : PubMed/NCBI
|
43.
|
Singh BB, Chandler FW Jr, Whitaker SB and
Forbes-Nelson AE: Immunohistochemical evaluation of bcl-2
oncoprotein in oral dysplasia and carcinoma. Oral Surg Oral Med
Oral Pathol Oral Radiol Endod. 85:692–698. 1998. View Article : Google Scholar : PubMed/NCBI
|
44.
|
Vaux DL, Cory S and Adams JM: Bcl-2 gene
promotes haemopoietic cell survival and cooperates with c-myc to
immortalize pre-B cells. Nature. 335:440–442. 1988. View Article : Google Scholar : PubMed/NCBI
|
45.
|
Ecker K and Hengst L: Skp2: caught in the
Akt. Nat Cell Biol. 11:377–379. 2009. View Article : Google Scholar : PubMed/NCBI
|
46.
|
Guillouf C, Grana X, Selvakumaran M, De
Luca A, Giordano A, Hoffman B and Liebermann DA: Dissection of the
genetic programs of p53-mediated G1 growth arrest and apoptosis:
blocking p53-induced apoptosis unmasks G1 arrest. Blood.
85:2691–2698. 1995.PubMed/NCBI
|
47.
|
Bishop JM: Cancer: the rise of the genetic
paradigm. Genes Dev. 9:1309–1315. 1995. View Article : Google Scholar : PubMed/NCBI
|
48.
|
Campisi J: Senescent cells, tumor
suppression, and organismal aging: good citizens, bad neighbours.
Cell. 120:513–522. 2005. View Article : Google Scholar : PubMed/NCBI
|