Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles (Review)
- Authors:
- Ruth Magaye
- Jinshun Zhao
- Linda Bowman
- Min Ding
-
Affiliations: Department of Preventive Medicine of the Medical School, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Ningbo University, Ningbo, Zhejiang 315211, P.R. China, Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA - Published online on: August 7, 2012 https://doi.org/10.3892/etm.2012.656
- Pages: 551-561
This article is mentioned in:
Abstract
Klapper M, Nenov S, Haschick R, Müller K and Müllen K: Oil-in-oil emulsions: a unique tool for the formation of polymer nanoparticles. Acc Chem Res. 41:1190–1201. 2008. View Article : Google Scholar : PubMed/NCBI | |
Morimoto Y, Kobayashi N, Shinohara N, Myojo T, Tanaka I and Nakanishi J: Hazard assessments of manufactured nanomaterials. J Occup Health. 52:325–334. 2010. View Article : Google Scholar : PubMed/NCBI | |
Scuri M, Chen BT, Castranova V, et al: Effects of titanium dioxide nanoparticle exposure on neuroimmune responses in rat airways. J Toxicol Environ Health A. 73:1353–1369. 2010. View Article : Google Scholar : PubMed/NCBI | |
Buffle J: The key role of environmental colloids/nanoparticles for the sustainability of life. Environ Chem. 3:155–158. 2006. View Article : Google Scholar | |
Ng C, Li JJ, Bay B and Yung LL: Current studies into the genotoxic effects of nanomaterials. J Nucleic Acids. 2010:9478592010.PubMed/NCBI | |
Rushton EK, Jiang J, Leonard SS, et al: Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A. 73:445–461. 2010. View Article : Google Scholar : PubMed/NCBI | |
Buzea C, Pacheco II and Robbie K: Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2:MR17–MR71. 2007.PubMed/NCBI | |
LeBlanc AJ, Cumpston JL, Chen BT, Frazer D, Castranova V and Nurkiewicz TR: Nanoparticle inhalation impairs endothelium-dependent vasodilation in subepicardial arterioles. J Toxicol Environ Health A. 72:1576–1584. 2009. View Article : Google Scholar : PubMed/NCBI | |
Oberdörster G: Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health. 74:1–8. 2001. | |
Oberdörster G, Ferin J and Lehnert BE: Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 102(Suppl 5): 173–179. 1994.PubMed/NCBI | |
Liang G, Pu Y, Yin L, et al: Influence of different sizes of titanium dioxide nanoparticles on hepatic and renal functions in rats with correlation to oxidative stress. J Toxicol Environ Health A. 72:740–745. 2009. View Article : Google Scholar | |
Zhao J, Bowman L, Zhang X, et al: Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/Bid and mitochondrial pathways. J Toxicol Environ Health A. 72:1141–1149. 2009. | |
Gulumian M and Vallyathan V: Nanoparticles and potential human health implications: past and future directions. Preface J Toxicol Environ Health A. 73:339–340. 2010.PubMed/NCBI | |
Huang YC, Karoly ED, Dailey LA, et al: Comparison of gene expression profiles induced by coarse, fine, and ultrafine particulate matter. J Toxicol Environ Health A. 74:296–312. 2011. View Article : Google Scholar : PubMed/NCBI | |
Valko M, Rhodes CJ, Moncol J, Izakovic M and Mazur M: Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 160:1–40. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ghio AJ, Carraway MS and Madden MC: Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J Toxicol Environ Health B Crit Rev. 15:1–21. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Castranova V, Halliwell B and Vallyathan V: Reactive oxygen species and silica-induced carcinogenesis. J Toxicol Environ Health B Crit Rev. 1:181–197. 1998. View Article : Google Scholar : PubMed/NCBI | |
Fahmy B and Cormier SA: Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro. 23:1365–1371. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lin W, Stayton I, Huang Y, Zhou XD and Ma Y: Cytotoxicity and cell membrane depolarization induced by aluminum oxide nanoparticles in human lung epithelial cells A549. Toxicol Environ Chem. 90:983–996. 2008. View Article : Google Scholar | |
Lin W, Xu Y, Huang CC, Ma Y, Shannon KB, Chen DR and Huang YW: Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanoparticle Res. 11:25–39. 2009. View Article : Google Scholar | |
Lin W, Huang YW, Zhou XD and Ma Y: In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol. 217:252–259. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lin W, Huang YW, Zhou XD and Ma Y: Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol. 25:451–457. 2006. View Article : Google Scholar : PubMed/NCBI | |
Limbach LK, Wick P, Manser P, Grass RN, Bruinink A and Stark WJ: Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol. 41:4158–4163. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tabet L, Bussy C, Amara N, et al: Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells. J Toxicol Environ Health A. 72:60–73. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW and Tang L: Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol. 7:222010. View Article : Google Scholar : PubMed/NCBI | |
Zhao J and Castranova V: Toxicology of nanomaterials used in nanomedicine. J Toxicol Environ Health B Crit Rev. 14:593–632. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharya K, Cramer H, Albrecht C, et al: Vanadium pentoxide-coated ultrafine titanium dioxide particles induce cellular damage and micronucleus formation in V79 cells. J Toxicol Environ Health A. 71:976–980. 2008. View Article : Google Scholar | |
Wang K, Xu JJ and Chen HY: A novel glucose biosensor based on the nanoscaled cobalt phthalocyanine-glucose oxidase biocomposite. Biosens Bioelectron. 20:1388–1396. 2005. View Article : Google Scholar : PubMed/NCBI | |
Martens JWD and Peeters WL: Anisotropy in cobalt-ferrite thin films. J Magn Magn Mater. 61:21–23. 1986. View Article : Google Scholar | |
Bouchard LS, Anwar MS, Liu GL, Hann B, Xie ZH, Gray JW, Wang X, Pines A and Chen FF: Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proc Natl Acad Sci USA. 106:4085–4089. 2009. View Article : Google Scholar : PubMed/NCBI | |
Seo WS, Lee JH, Sun X, Suzuki Y, Mann D, Liu Z, Terashima M, Yang PC, McConnel MV, Nishimura DG and Dai H: FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat Mater. 5:971–976. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sadjadi MS, Pourahmad A, Sohrabnezhad Sh and Zare K: Formation of NiS and CoS semiconductor nanoparticles inside mordenite-type zeolite. Mater Lett. 61:2923–2926. 2006. View Article : Google Scholar | |
Florencio L, Field JA and Lettinga G: Importance of cobalt for individual trophic groups in an anaerobic methanol-degrading consortium. Appl Environ Microbiol. 60:227–234. 1994.PubMed/NCBI | |
Council INI: Wastewater treatment using semiconductor nanocomposites. http://www.nanowerk.com/news/newsid=11840.phpuri. 2011 | |
Lison D, Lauwerys R, Demedts M and Nemery B: Experimental research into the pathogenesis of cobalt/hard metal lung disease. Eur Respir J. 9:1024–1028. 1996. View Article : Google Scholar : PubMed/NCBI | |
Lison D, De Boeck M, Verougstraete V and Kirsch-Volders M: Update on the genotoxicity and carcinogenicity of cobalt compounds. Occup Environ Med. 58:619–625. 2001. View Article : Google Scholar : PubMed/NCBI | |
Domingo JL: Metal-induced developmental toxicity in mammals: a review. J Toxicol Environ Health. 42:123–141. 1994. View Article : Google Scholar : PubMed/NCBI | |
Kuo CY, Wong RH, Lin JY, Lai JC and Lee H: Accumulation of chromium and nickel metals in lung tumors from lung cancer patients in Taiwan. J Toxicol Environ Health A. 69:1337–1344. 2006. View Article : Google Scholar : PubMed/NCBI | |
De Boeck M, Kirsch-Volders M and Lison D: Cobalt and antimony: genotoxicity and carcinogenicity. Mutat Res. 533:135–152. 2003.PubMed/NCBI | |
Beyersmann D and Hartwig A: The genetic toxicology of cobalt. Toxicol Appl Pharmacol. 115:137–145. 1992. View Article : Google Scholar | |
Ponti J, Sabbioni E, Munaro B, Broggi F, Marmorato P, Franchini F, Colognato R and Rossi F: Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts. Mutagenesis. 24:439–445. 2009. View Article : Google Scholar : PubMed/NCBI | |
Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E and Migliore L: Comparative genotoxicity of cobalt nanoparticles and ions in human peripheral leukocytes in vitro. Mutagenesis. 23:377–382. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kwon Y, Xia Z, Glyn-Jones S, Beard D, Gill HS and Murray D: Dose-dependent cytotoxicity of clinically relevant cobalt nanoparticles and ions on macrophages in vitro. Biomed Mater. 4:0250182009. View Article : Google Scholar : PubMed/NCBI | |
Peters K, Unger RE, Gatti AM, Sabbioni E, Tsaryk R and Kirkpatrick CJ: Metallic nanoparticles exhibit paradoxical effects on oxidative stress and pro-inflammatory response in endothelial cells in vitro. Int J Immunopathol Pharmacol. 20:685–695. 2007.PubMed/NCBI | |
Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S, Fisher J, Ingham E and Case CP: The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro. Biomaterials. 28:2946–2958. 2007. View Article : Google Scholar : PubMed/NCBI | |
Figgitt M, Newson R, Leslie IJ, Fisher J, Ingham E and Case CP: The genotoxicity of physiological concentrations of chromium (Cr(III) and Cr(VI)) and cobalt (Co(II)): an in vitro study. Mutat Res. 688:53–61. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tsaousi A, Jones E and Case CP: The in vitro genotoxicity of orthopaedic ceramic (Al2O3) and metal (CoCr alloy) particles. Mutat Res. 697:1–9. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans WH, Surprenant A, Lopez-Castejon G, Mann S, Davis SA, et al: Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol. 4:876–883. 2009. View Article : Google Scholar : PubMed/NCBI | |
Parry MC, Bhabra G, Sood A, Machado F, Cartwright L, Saunders M, Ingham E, Newson R, Blom AW and Case CP: Thresholds for indirect DNA damage across cellular barriers for orthoaedic biomaterials. Biomaterials. 31:4477–4483. 2010. View Article : Google Scholar : PubMed/NCBI | |
Grassian VH, Adamcakova-Dodd A, Pettibone JM, O’shaughnessy PT and Thorne PS: Inflammatory response of mice to manufactured titanium dioxide nanoparticles: comparison of size effects through different exposure routes. Nanotoxicology. 1:211–226. 2007. View Article : Google Scholar | |
Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B and Donaldson K: The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med. 64:609–615. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sayes CM, Reed KL and Warheit DB: Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci. 97:163–180. 2007. View Article : Google Scholar : PubMed/NCBI | |
Park E and Park K: Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett. 184:18–25. 2009. View Article : Google Scholar : PubMed/NCBI | |
Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL and Schlager JJ: Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 112:13608–13619. 2008. View Article : Google Scholar : PubMed/NCBI | |
Guildford AL, Poletti T, Osbourne LH, Di Cerbo A, Gatti AM and Santin M: Nanoparticles of a different source induce different patterns of activation in key biochemical and cellular components of the host response. J R Soc Interface. 6:1213–1221. 2009.PubMed/NCBI | |
Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ and Doak SH: NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials. 30:3891–3894. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang H and Cho CH: Effect of NF-κB signaling on apoptosis in chronic inflammation-associated carcinogenesis. Curr Cancer Drug Targets. 10:593–599. 2010. | |
Papis E, Rossi F, Raspanti M, Dalle-Donne I, Colombo G, Milzani A, Bernadini G and Gornati R: Engineered cobalt oxide nanoparticles readily enter cells. Toxicol Lett. 189:253–259. 2009. View Article : Google Scholar : PubMed/NCBI | |
Anard D, Kirsch-Volders M, Elhajouji A, Belpaeme K and Lison D: In vitro genotoxic effects of hard metal particles assessed by alkaline single cell gel and elution assays. Carcinogenesis. 18:177–184. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ding M, Kisin ER, Zhao J, Bowman L, Lu Y, Jiang B, Leonard S, Vallyathan V, Castranova V, Murrray AR, et al: Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells. Toxicol Appl Pharmacol. 241:260–268. 2009. View Article : Google Scholar : PubMed/NCBI | |
Busch W, Kühnel D, Schirmer K and Scholz S: Tungsten carbide cobalt nanoparticles exert hypoxia-like effects on the gene expression level in human keratinocytes. BMC Genomics. 11:652010. View Article : Google Scholar : PubMed/NCBI | |
Zhang XD, Zhao J, Bowman L, Shi X, Castranova V and Ding M: Tungsten carbide-cobalt particles activate Nrf2 and its downstream target genes in JB6 cells possibly by ROS generation. J Environ Pathol Toxicol Oncol. 29:31–40. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pershina AG, Sazonov AE, Novikov DV, et al: Study of DNA interaction with cobalt ferrite nanoparticles. J Nanosci Nanotechnol. 11:2673–2677. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hansen T, Clermont G, Alves A, Eloy R, Brochhausen C, Boutrand JP, Gatti AM and Kirkpatrick CJ: Biological tolerance of different materials in bulk and nanoparticulate form in a rat model: sarcoma development by nanoparticles. J R Soc Interface. 3:767–775. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ban I, Stergar J, Drofenik M, Ferk G and Makovec D: Synthesis of copper-nickel nanoparticles prepared by mechanical milling for use in magnetic hyperthermia. J Magn Magn Mater. 323:2254–2258. 2011. View Article : Google Scholar | |
Chou KS, Chang CS and Huang KC: Study on the characteristics of nanosized nickel particles using sodium borohydride to promote conve. AZojomo. 3:2007. View Article : Google Scholar | |
Zhu FQ, Chern GW, Tchernyshyov O, Zhu XC, Zhu JG and Chien CL: Magnetic bistability and controllable reversal of asymmetric ferromagnetic nanorings. Phys Rev Lett. 96:0272052006. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Shi X, Castranova V and Ding M: Occupational toxicology of nickel and nickel compounds. J Environ Pathol Toxicol Oncol. 28:177–208. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cameron KS, Buchner V and Tchounwou PB: Exploring the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity: a literature review. Rev Environ Health. 26:81–92. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kasprzak KS, Sunderman FW Jr and Salnikow K: Nickel carcinogenesis. Mutat Res. 533:67–97. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Li C and Wu W: Research progress on carcinogenicity of nickel and its compounds. Chinese Journal of Industrial Medicine. 4:276–279. 2010.(In Chinese). | |
Oller AR: Respiratory carcinogenicity assessment of soluble nickel compounds. Environ Health Perspect. 110(Suppl 5): 841–844. 2002. View Article : Google Scholar : PubMed/NCBI | |
Seilkop SK and Oller AR: Respiratory cancer risks associated with low-level nickel exposure: an integrated assessment based on animal, epidemiological, and mechanistic data. Regul Toxicol Pharmacol. 37:173–190. 2003. View Article : Google Scholar : PubMed/NCBI | |
Grimsrud TK, Berge SR, Resmann F, Norseth T and Andersen A: Assessment of historical exposures in a nickel refinery in Norway. Scand J Work Environ Health. 26:338–345. 2000. View Article : Google Scholar : PubMed/NCBI | |
Goodman JE, Prueitt RL, Thakali S and Oller AR: The nickel ion bioavailability model of the carcinogenic potential of nickel-containing substances in the lung. Crit Rev Toxicol. 41:142–174. 2011. View Article : Google Scholar : PubMed/NCBI | |
Costa M, Yan Y, Zhao D and Sainikow K: Molecular mechanisms of nickel carcinogenesis: gene silencing by nickel delivery to the nucleus and gene activation/inactivation by nickel-induced cell signaling. J Environ Monit. 5:222–223. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Kusaka Y, Zhu X, et al: Comparative toxicity of standard nickel and ultrafine nickel in lung after intratracheal instillation. J Occup Health. 45:23–30. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kyono H, Kusaka Y, Homma K, Kubota H and Endo-Ichikawa Y: Reversible lung lesions in rats due to short-term exposure to ultrafine cobalt particles. Ind Health. 30:103–118. 1992. View Article : Google Scholar : PubMed/NCBI | |
Maynard AD and Kuempel ED: Airborne nanostructured particles and occupational health. J Nanopart Res. 7:587–614. 2005. View Article : Google Scholar | |
NIPERA: Safe Use of Nickel in the Workplace - Incorporating European Nickel Risk Assessment Outcomes. A guide for Health Maintenance of Workers Exposed to Nickel, Its Compounds and Alloys - Health guide. 3rd edition. Nickel Producers Environmental Research Association; Durham, NC, USA: 2008 | |
Park S, Lee YK, Jung M, Kim KH, Chung N, Ahn EK, Lim Y and Lee KH: Cellular toxicity of various inhalable nanoparticles on human alveolar epithelial cells. Inhal Toxicol. 19(Suppl 1): 59–65. 2007. View Article : Google Scholar | |
Nagata S: Apoptotic DNA fragmentation. Exp Cell Res. 256:12–18. 2000. View Article : Google Scholar | |
Yang H, Liu C, Yang D, Zhang H and Xi Z: Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol. 29:69–78. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pujalté I, Passagne I, Daculsi R, Brouillaud B, Rémy M, Tréguer M, DePortal C, Ohayon-Courtès C and L’Azou B: Toxicity and oxidative stress induced by metallic nanoparticles in renal cells. Proceeding of the Annual Meeting of the French Society of Toxicology 2010. Paris, 2010 (Available at: http://www.sftox.com/congres/sft2010/posters/index.htmluri). | |
Zhao J, Bowman L, Zhang X, Shi X, Jiang B, Castranova V and Ding M: Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway. J Nanobiotechnology. 7:22009. View Article : Google Scholar : PubMed/NCBI | |
Ryter SW, Kim HP, Hoetzel A, et al: Mechanisms of cell death in oxidative stress. Antioxid Redox Signal. 9:49–89. 2007. View Article : Google Scholar : PubMed/NCBI | |
Guo D, Wu C, Li X, Jiang H, Wang X and Chen B: In vitro cellular uptake and cytotoxic effect of functionalized nickel nanoparticles on leukemia cancer cells. J Nanosci Nanotechnol. 8:2301–2307. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pietruska JR, Liu X, Smith A, McNeil K, Weston P, Zhitkovich A, Hurt R and Kane AB: Bioavailability, intracellular mobilization of nickel, and HIF-1α activation in human lung epithelial cells exposed to metallic nickel and nickel oxide nanoparticles. Toxicol Sci. 124:138–148. 2011.PubMed/NCBI | |
Ahamed M: Toxic response of nickel nanoparticles in human lung epithelial A549 cells. Toxicol In Vitro. 25:930–936. 2011. View Article : Google Scholar : PubMed/NCBI | |
Horie M, Fukui H, Nishio K, Endoh S, Kato H, Fujita K, Miyauchi A, Nakamura A, Shichiri M, Ishida N, et al: Evaluation of Acute Oxidative Stress Induced by NiO Nanoparticles In Vivo and In Vitro. J Occup Health. 53:64–74. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cho WS, Duffin R, Poland CA, Howie SE, MacNee W, Bradley M, Megson IL and Donaldson K: Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect. 118:1699–1706. 2010. View Article : Google Scholar : PubMed/NCBI | |
Iannitti T, Capone S, Gatti A, Capitani F, Cetta F and Palmieri B: Intracellular heavy metal nanoparticle storage: progressive accumulation within lymph nodes with transformation from chronic inflammation to malignancy. Int J Nanomedicine. 5:955–960. 2010. View Article : Google Scholar | |
Phillip JI, Green FY, Davis JCA and Murray J: Pulmonary and systemic toxicity following exposure to nickel nanoparticles. Am J Ind Med. 53:763–767. 2010.PubMed/NCBI | |
Gillespie PA, Kang GS, Elder A, Gelein R, Chen L, Moreira AL, Koberstein J, Tchou-Wong KM, Gordon T and Chen LC: Pulmonary response after exposure to inhaled nickel hydroxide nanoparticles: short and long-term studies in mice. Nanotoxicology. 4:106–119. 2010. View Article : Google Scholar : PubMed/NCBI | |
Morimoto Y, Ogami A, Todoroki M, Yamamoto M, Murakami M, Hirohashi M, Oyabu T, Myojo T, Nishi K, Kadoya C, et al: Expression of inflammation-related cytokines following intratracheal instillation of nickel oxide nanoparticles. Nanotoxicology. 4:161–176. 2010. View Article : Google Scholar : PubMed/NCBI | |
Morimoto Y, Hirohashi M, Ogami A, Oyabu T, Myojo T, Hashiba M, Mizuquchi Y, Kambara T, Lee BW, Kuroda E and Tanaka I: Pulmonary toxicity following an intratracheal instillation of nickel oxide nanoparticle agglomerates. J Occup Health. 53:293–295. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nishi K, Morimoto Y, Ogami A, Murakami M, Myojo T, Oyabu T, Kadoya C, Yamamoto M, Todoroki M, Hirohashi M, et al: Expression of cytokine-induced neutrophil chemoattractant in rat lungs by intratracheal instillation of nickel oxide nanoparticles. Inhal Toxicol. 21:1030–1039. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kang GS, Gillespie PA, Gunnison A, Rengifo H, Koberstein J and Chen LC: Comparative pulmonary toxicity of inhaled nickel nanoparticles; role of deposited dose and solubility. Inhal Toxicol. 23:95–103. 2011. View Article : Google Scholar : PubMed/NCBI | |
Brown TJ, Bide T, Walters AS, Idone NE, Shaw RA, Hannis SD, Lusty PAJ and Kendall R: World Mineral Production 2005–09. British Geological Survey; Nottingham, UK: 2011 | |
Olivares M and Uauy R: Copper as an essential nutrient. Am J Clin Nutr. 63:791S–796S. 1996.PubMed/NCBI | |
Chambers A, Krewski D, Birkett N, et al: An exposure-response curve for copper excess and deficiency. J Toxicol Environ Health B Crit Rev. 13:546–578. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stern BR, Solioz M, Krewski D, et al: Copper and human health: biochemistry, genetics, and strategies for modeling dose-response relationships. J Toxicol Environ Health B Crit Rev. 10:157–222. 2007. View Article : Google Scholar : PubMed/NCBI | |
Failla ML: Trace elemnts and host defense: recent advances and continuing challenges. J Nutr. 133(5 Suppl 1): 1443S–1447S. 2003.PubMed/NCBI | |
Tapiero H, Townsend DM and Tew KD: Trace elements in the human physiology and pathology. Copper Biomed Pharmacother. 57:386–398. 2003. View Article : Google Scholar | |
Chen Z, Meng H, Xing GM, Chen CY, Zhao YL, Jia G, Wang T, Yuan H, Ye C, Zhao F, et al: Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett. 163:109–120. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kempson IM, Skinner WM and Kirkbride KP: The occurrence and incorporation of copper and zinc in hair and their potential role as bioindicators: a review. J Toxicol Environ Health B Crit Rev. 10:611–622. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cioffi N, Ditaranto N, Torsi L, Picca RA, Sabbatini L, Valentini A, Novello L, Tantillo G, Bleve-Zacheo T and Zambonin PG: Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem. 381:607–616. 2005. View Article : Google Scholar : PubMed/NCBI | |
Athanassiou EK, Grass RN and Stark WJ: Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology. 17:16682006. View Article : Google Scholar | |
Hahn A, Günther S, Wagener P and Barcikowski S: Electro-chemistry-controlled metal ion release from silicone elastomer nanocomposites through combination of different metal nanoparticles. J Mater Chem. 21:10287–10289. 2011. View Article : Google Scholar | |
De Oliveira JV, Boufleur LA, Dos Santos CE, et al: Occupational genotoxicity among copper smelters. Toxicol Ind Health. Oct 31–2011.(Epub ahead of print). | |
Bhunya SP and Jena GB: Clastogenic effects of copper sulphate in chick in vivo test system. Mutat Res. 367:57–63. 1996. View Article : Google Scholar : PubMed/NCBI | |
Agarwal K, Sharma A and Talukder G: Clastogenic effects of copper sulphate on the bone marrow chromosomes of mice in vivo. Mutat Res. 243:1–6. 1990. View Article : Google Scholar : PubMed/NCBI | |
Meng H, Chen Z, Xing GM, Yuan H, Chen CY, Zhao F, Zhang CC, Wang Y and Zhao YL: Ultra high reactivity and grave nanotoxicity of copper nanoparticles. Journal of Radioanalytical and Nuclear Chemistry. 272:595–598. 2007. View Article : Google Scholar | |
Jose GP, Santra S, Mandal SK and Sengupta TK: Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells. J Nanobiotechnology. 9:92011. View Article : Google Scholar : PubMed/NCBI | |
Dolmans DE, Fukumura D and Jain RK: Photodynamic therapy for cancer. Nat Rev Cancer. 3:380–387. 2003. View Article : Google Scholar | |
Petersen EJ and Nelson BC: Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem. 398:613–650. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Mo Y, Wan R, Chien S, Zhang X and Zhang Q: Regulation of plasminogen activator inhibitor-1 expression in endothelial cells with exposure to metal nanoparticles. Toxicol Lett. 195:82–89. 2010. View Article : Google Scholar : PubMed/NCBI | |
Karlsson HL, Cronholm P, Gustafsson J and Möller L: Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 21:1726–1732. 2008. View Article : Google Scholar : PubMed/NCBI | |
Karlsson HL, Gustafsson J, Cronholm P and Moller L: Size-dependent toxicity of metal oxide particles - a comparison between nano- and micrometer size. Toxicol Lett. 188:112–118. 2009. View Article : Google Scholar : PubMed/NCBI | |
Prabhu BM, Ali SF, Murdock RC, Hussain SM and Srivatsan M: Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology. 4:150–160. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pettibone JM, Adamcakova-Dodd A, Thorne PS, O’Shaughnessy PT, Weydert JA and Grassian VH: Inflammatory response of mice following inhalation exposure to iron and copper nanoparticles. Nanotoxicology. 2:189–204. 2008. View Article : Google Scholar | |
Yang B, Wang Q, Lei R, Wu C, Shi C, Wang Q, Yaun Y, Wang Y, Luo Y, Hu Z, Ma H and Liao M: Systems toxicology used in nanotoxicology: mechanistic insights into the hepatotoxicity of nano-copper particles from toxicogenomics. J Nanosci Nanotechnol. 10:8527–8537. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Gao Y, Zhang L, Wang T, Wang J, Jiao F, Li W, Liu Y, Li Y, Li B, Chai Z, Wu G and Chen C: Potential health impact on mice after nasal instillation of nano-sized copper particles and their translocation in mice. J Nanosci Nanotechnol. 9:6335–6343. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sharma HS, Ali SF, Hussain S, Schlager JJ and Sharma A: Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J Nanosci Nanotechnol. 9:5055–5072. 2009. View Article : Google Scholar | |
Martindale JL and Holbrook NJ: Cellular response to oxidative stress: signaling for suicide and rvival. J Cell Physiol. 192:1–15. 2002. View Article : Google Scholar : PubMed/NCBI | |
Huang YW, Wu CH and Aronstam RS: Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials. 3:4842–4859. 2010. View Article : Google Scholar |