1
|
Tsai HC and Baylin SB: Cancer epigenetics:
linking basic biology to clinical medicine. Cell Res. 21:502–517.
2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Baylin SB and Jones PA: A decade of
exploring the cancer epigenome: biological and translational
implications. Nat Rev Cancer. 11:726–734. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yao JY, Zhang L, Zhang X, He ZY, Ma Y, Hui
LJ, Wang X and Hu Y: H3K27 trimethylation is an early epigenetic
event of p16INK4A silencing for regaining tumorigenesis
in fusion reprogrammed hepatoma cells. Biol Chem. 285:18828–18837.
2010.PubMed/NCBI
|
4
|
Shones DE, Cui K, Cuddapah S, Roh TY,
Barski A, Wang Z, Wei G and Zhao K: Dynamic regulation of
nucleosome positioning in the human genome. Cell. 132:887–898.
2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rea S, Eisenhaber F, O’Carroll D, Strahl
BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD
and Jenuwein T: Regulation of chromatin structure by site-specific
histone H3 methyltransferases. Nature. 406:593–599. 2000.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Noma K, Allis CD and Grewal SI:
Transitions in distinct histone H3 methylation patterns at the
heterochromatin domain boundaries. Science. 293:1150–1155. 2001.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Peters AH, O’Carroll D, Scherthan H,
Mechtler K, Sauer S, Schöfer C, Weipoltshammer K, Pagani M, Lachner
M, Kohlmaier A, et al: Loss of the Suv39h histone
methyltransferases impairs mammalian heterochromatin and genome
stability. Cell. 107:323–337. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Stallcup MR: Role of protein methylation
in chromatin remodeling and transcriptional regulation. Oncogene.
20:3014–3020. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang Y and Reinberg D: Transcription
regulation by histone methylation: interplay between different
covalent modifications of the core histone tails. Genes Dev.
15:2343–2360. 2001. View Article : Google Scholar
|
10
|
Nielsen SJ, Schneider R, Bauer UM,
Bannister AJ, Morrison A, O’Carroll D, Firestein R, Cleary M,
Jenuwein T, Herrera RE and Kouzarides T: Rb targets histone H3
methylation and HP1 to promoters. Nature. 412:561–565. 2001.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Herman JG, Merlo A, Mao L, Lapidus RG,
Issa JP, Davidson NE, Sidransky D and Baylin SB: Inactivation of
the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA
methylation in all common human cancers. Cancer Res. 55:4525–4530.
1995.PubMed/NCBI
|
12
|
Ahuja N, Mohan AL, Li Q, Stolker JM,
Herman JG, Hamilton SR, Baylin SB and Issa JP: Association between
CpG island methylation and microsatellite instability in colorectal
cancer. Cancer Res. 57:3370–3374. 1997.PubMed/NCBI
|
13
|
Collado M, Blasco M and Serrano M:
Cellular senescence in cancer and ageing. Cell. 130:223–233. 2007.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Clark SJ and Melki J: DNA methylation and
gene silencing in cancer: which is the guilty party? Oncogene.
21:5380–5387. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gonzalez-Zulueta M, Bender CM, Yang AS,
Nguyen T, Beart RW, Van Tornout JM and Jones PA: Methylation of the
5′ CpG island of the p16/CDKN2 tumor suppressor gene in normal and
transformed human tissues correlates with gene silencing. Cancer
Res. 4531–4535. 1995.
|
16
|
Malhotra P, Kochhar R, Vaiphei K, Wig JD
and Mahmood S: Aberrant promoter methylation of p16 in colorectal
adenocarcinoma in North Indian patients. World J Gastrointest
Oncol. 7:295–303. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liggett WH Jr and Sidransky D: Role of the
p16 tumor suppressor gene in cancer. J Clin Oncol. 16:1197–1206.
1998.PubMed/NCBI
|
18
|
Matsuda Y: Molecular mechanism underlying
the functional loss of cyclin dependent kinase inhibitors p16 and
p27 in hepatocellular carcinoma. World J Gastroenterol.
14:1734–1740. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Esteller M: The necessity of a human
epigenome project. Carcinogenesis. 27:1121–1125. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhou J, Cao J, Lu Z, Liu H and Deng DA:
115-bp MethyLight assay for detection of p16 (CDKN2A) methylation
as a diagnostic biomarker in human tissues. BMC Med Genet.
12:672011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Huang LW, Pan HS, Lin YH, Seow KM, Chen HJ
and Hwang JL: P16 methylation is an early event in cervical
carcinogenesis. Int J Gynecol Cancer. 21:452–456. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang Y, Wang R, Song H, Huang G, Yi J,
Zheng Y, Wang J and Chen L: Methylation of multiple genes as a
candidate biomarker in non-small cell lung cancer. Cancer Lett.
303:21–28. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zainuddin N, Kanduri M, Berglund M,
Lindell M, Amini RM, Roos G, Sundström C, Enblad G and Rosenquist
R: Quantitative evaluation of p16(INK4a) promoter methylation using
pyrosequencing in de novo diffuse large B-cell lymphoma. Leuk Res.
35:438–443. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Rosenfeld JA, Wang Z, Shones DE, Zhao K,
DeSalle R and Zhang MQ: Determination of enriched histone
modifications in non-genic portions of the human genome. BMC
Genomics. 10:1432009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Barski A, Cuddapah S, Cui K, Roh TY,
Schones DE, Wang Z, Wei G, Chepelev I and Zhao K: High-resolution
profiling of histone methylations in the human genome. Cell.
129:823–837. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Farnham Lab Chromatin Immunoprecipitation
Protocol for Tissues: UC Davis Genome Center. 2006, http://farnham.genomecenter.ucdavis.edu/protocols/tissues.htmluri.
Accessed April 19, 2012.
|
27
|
Baylin SB: DNA methylation and gene
silencing in cancer. Nat Clin Prac Oncol. 2(Suppl 1): S4–S11. 2005.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Gal-Yam EN, Saito Y, Egger G and Jones PA:
Cancer epigenetics: modifications, screening, and therapy. Annu Rev
Med. 59:267–280. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Enroth S, Rada-Iglesias A, Andersson R,
Wallerman O, Wanders A, Påhlman L, Komorowski J and Wadelius C:
Cancer associated epigenetic transitions identified by genome-wide
histone methylation binding profiles in human colorectal cancer
samples and paired normal mucosa. BMC Cancer. 11:4502011.
View Article : Google Scholar
|
30
|
Bird A: DNA methylation patterns and
epigenetic memory. Genes Dev. 16:6–21. 2002. View Article : Google Scholar
|
31
|
Esteller M, Corn PG, Baylin SB and Herman
JG: A gene hypermethylation profile of human cancer. Cancer Res.
61:3225–3229. 2001.PubMed/NCBI
|
32
|
Shima K, Nosho K, Baba Y, Cantor M,
Meyerhardt JA, Giovannucci EL, Fuchs CS and Ogino S: Prognostic
significance of CDKN2A (p16) promoter methylation and loss of
expression in 902 colorectal cancers: Cohort study and literature
review. Int J Cancer. 128:1080–1094. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Krtolica K, Krajnovic M, Usaj-Knezevic S,
Babic D, Jovanovic D and Dimitrijevic B: Comethylation of p16 and
MGMT genes in colorectal carcinoma: correlation with
clinicopathological features and prognostic value. World J
Gastroenterol. 13:1187–1194. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sakamoto J, Fujiya M, Okamoto K, Nata T,
Inaba Y, Moriichi K, Tanabe H, Mizukami Y, Watari J, Ashida T and
Kohgo Y: Immunoprecipitation of nucleosomal DNA is a novel
procedure to improve the sensitivity of serum screening for the p16
hypermethylation associated with colon cancer. Cancer Epidemiol.
34:194–199. 2010. View Article : Google Scholar
|
35
|
Guan RJ, Fu Y, Holt PR and Pardee AB:
Association of K-ras mutations with p16 methylation in human colon
cancer. Gastroenterology. 116:1063–1071. 1999. View Article : Google Scholar : PubMed/NCBI
|
36
|
Krakowczyk L, Strzelczyk JK, Adamek B,
Zalewska-Ziob M, Arendt J, Półtorak S, Maciejewski B and Wiczkowski
A: Methylation of the MGMT and p16 genes in sporadic colorectal
carcinoma and corresponding normal colonic mucosa. Med Sci Monit.
14:BR219–BR225. 2008.PubMed/NCBI
|
37
|
Psofaki V, Kalogera C, Tzambouras N,
Stephanou D, Tsianos E, Seferiadis K and Kolios G: Promoter
methylation status of hMLH1, MGMT, and CDKN2A/p16 in colorectal
adenomas. World J Gastroenterol. 16:3553–3560. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Barault L, Charon-Barra C, Jooste V, de la
Vega MF, Martin L, Roignot P, Rat P, Bouvier AM, Laurent-Puig P,
Faivre J, et al: Hypermethylator phenotype in sporadic colon
cancer: study on a population-based series of 582 cases. Cancer
Res. 68:8541–8546. 2008. View Article : Google Scholar
|
39
|
Deligezer U, Esin Akisik EE and Dalay N: A
novel application of melting curves: utility of peak area
calculation for relative methylation quantification. Clin Chem Lab
Med. 45:867–873. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yoshino M, Suzuki M, Tian L, et al:
Promoter hypermethylation of the p16 and Wif-1 genes as an
independent prognostic marker in stage 1A non-small cell lung
cancers. Int J Oncol. 35:1201–1209. 2009.PubMed/NCBI
|
41
|
Steinmann K, Sandner A, Schagdarsurengin U
and Dammann RH: Frequent promoter hypermethylation of tumor-related
genes in head and neck squamous cell carcinoma. Oncol Rep.
22:1519–1526. 2009.PubMed/NCBI
|
42
|
Santini V, Kantarjian HM and Issa JP:
Changes in DNA methylation in neoplasia: pathophysiology and
therapeutic implications. Ann Intern Med. 134:573–586. 2001.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Sauer J, Jang H, Zimmerly EM, Kim KC, Liu
Z, Chanson A, Smith DE, Mason JB, Friso S and Choi SW: Ageing,
alcohol consumption and folate are determinants of genomic DNA
methylation, p16 promoter methylation and the expression of p16 in
the mouse colon. Br J Nutr. 104:24–30. 2010. View Article : Google Scholar : PubMed/NCBI
|
44
|
Keyes MK, Jang H, Mason JB, Liu Z, Crott
JW, Smith DE, Friso S and Choi SW: Older age and dietary folate are
determinants of genomic and p16-specific DNA methylation in mouse
colon. J Nutr. 137:1713–1717. 2007.PubMed/NCBI
|
45
|
Collins CJ and Sedivy JM: Involvement of
the INK4a/Arf gene locus in senescence. Aging Cell. 2:145–150.
2003. View Article : Google Scholar : PubMed/NCBI
|
46
|
Krishnamurthy J, Ramsey MR, Ligon KL,
Torrice C, Koh A, Bonner-Weir S and Sharpless NE:
p16INK4a induces an age-dependent decline in islet
regenerative potential. Nature. 443:453–457. 2006.
|
47
|
Kondo Y, Shen L and Issa JP: Critical role
of histone methylation in tumor suppressor gene silencing in
colorectal cancer. Mol Cell Biol. 23:206–215. 2003. View Article : Google Scholar : PubMed/NCBI
|
48
|
Xiao W, Custard KD, Brown RC, Lemmon BE,
Harada JJ, Goldberg RB and Fischer RL: DNA methylation is critical
for Arabidopsis embryogenesis and seed viability. Plant Cell.
18:805–814. 2006. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kondo Y, Shen L, Cheng AS, Ahmed S,
Boumber Y, Charo C, Yamochi T, Urano T, Furukawa K, Kwabi-Addo B,
et al: Gene silencing in cancer by histone H3 lysine 27
trimethylation independent of promoter DNA methylation. Nat Genet.
40:741–750. 2008. View
Article : Google Scholar : PubMed/NCBI
|
50
|
Bachman KE, Park BH, Rhee I, Rajagopalan
H, Herman JG, Baylin SB, Kinzler KW and Vogelstein B: Histone
modifications and silencing prior to DNA methylation of a tumor
suppressor gene. Cancer Cell. 3:89–95. 2003. View Article : Google Scholar : PubMed/NCBI
|
51
|
Sun Y, Jiang X, Xu Y, Ayrapetov MK, Moreau
LA, Whetstine JR and Price BD: Histone H3 methylation links DNA
damage detection to activation of the Tip60 tumor suppressor. Nat
Cell Biol. 11:1376–1382. 2009. View Article : Google Scholar : PubMed/NCBI
|
52
|
King-Yin Lam A, Ong K and Ho YH:
Colorectal mucinous adenocaecinoma: the clinicopathologic features
and significance of p16 and p53 expression. Dis Colon Rectum.
49:1275–1283. 2006.PubMed/NCBI
|
53
|
Kim BN, Yamamoto H, Ikeda K, Damdinsuren
B, Sugita Y, Ngan CY, Fujie Y, Ogawa M, Hata T, Ikeda M, et al:
Methylation and expression of p16INK4 tumor suppressor
gene in primary colorectal cancer tissues. Int J Oncol.
26:1217–1226. 2005.PubMed/NCBI
|
54
|
Tada T, Watanabe T, Kazama S, Kanazawa T,
Hata K, Komuro Y and Nagawa H: Reduced p16 expression correlates
with lymphatic invasion in colorectal cancers.
Hepatogastroenterology. 50:1756–1760. 2003.PubMed/NCBI
|
55
|
Shim YH, Kang GH and Ro JY: Correlation of
p16 hypermethylation with p16 protein loss in sporadic gastric
carcinomas. Lab Invest. 80:689–695. 2000. View Article : Google Scholar : PubMed/NCBI
|
56
|
Lam AK, Ong K, Giv MJ and Ho YH: p16
expression in colorectal adenocarcinoma: marker of aggressiveness
and morphological types. Pathology. 40:580–585. 2008. View Article : Google Scholar : PubMed/NCBI
|
57
|
Palmqvist R, Rutegârd JN, Bozoky B,
Landberg G and Stenling R: Human colorectal cancers with an intact
p16/cyclin D1/pRb pathway have up-regulated p16 expression and
decreased proliferation in small invasive tumor clusters. Am J
Pathol. 157:1947–1953. 2000. View Article : Google Scholar
|