1.
|
Ahn SH, Han MS, Yoon JH, et al: Treatment
of stage I non-small cell lung cancer with CyberKnife, image-guided
robotic stereotactic radiosurgery. Oncol Rep. 21:693–696.
2009.PubMed/NCBI
|
2.
|
Castelli J, Thariat J, Benezery K, et al:
Feasibility and efficacy of cyberknife radiotherapy for lung
cancer: early results. Cancer Radiother. 12:793–799. 2008.(In
French).
|
3.
|
Brown WT, Wu X, Wen BC, et al: Early
results of CyberKnife image-guided robotic stereotactic
radiosurgery for treatment of lung tumors. Comput Aided Surg.
12:253–261. 2007. View Article : Google Scholar : PubMed/NCBI
|
4.
|
Brown WT, Wu X, Wen BC, Fowler JF, et al:
Lung metastases treated by CyberKnife image-guided robotic
stereotactic radiosurgery at 41 months. South Med J. 101:376–382.
2008. View Article : Google Scholar : PubMed/NCBI
|
5.
|
Wilcox EE, Daskalov GM, Lincoln H, et al:
Comparison of planned dose distributions calculated by Monte Carlo
and Ray-Trace algorithms for the treatment of lung tumors with
cyberknife: a preliminary study in 33 patients. Int J Radiat Oncol
Biol Phys. 77:277–284. 2010. View Article : Google Scholar
|
6.
|
Bondiau PY, Doyen J, Mammar H, et al:
Reirradiation of spine and lung tumor with CyberKnife. Cancer
Radiother. 14:438–441. 2010.(In French).
|
7.
|
Liu P, Chen L and Huang X: The antitumor
effects of CIK cells combined with docetaxel against drug-resistant
lung adenocarcinoma cell line SPC-A1/DTX in vitro and in vivo.
Cancer Biother Radiopharm. 24:91–98. 2009. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Tome ME, Frye JB, Coyle DL, et al:
Lymphoma cells with increased anti-oxidant defenses acquire
chemoresistance. Exp Ther Med. 3:845–852. 2012.PubMed/NCBI
|
9.
|
Goldstraw P, Crowley J, Chansky K, et al:
The IASLC Lung Cancer Staging Project: proposals for the revision
of the TNM stage groupings in the forthcoming (seventh) edition of
the TNM Classification of malignant tumours. J Thorac Oncol.
2:706–714. 2007. View Article : Google Scholar
|
10.
|
Gibbs IC and Loo BW Jr: CyberKnife
stereotactic ablative radiotherapy for lung tumors. Technol Cancer
Res Treat. 9:589–596. 2010. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Qiao X, Tullgren O, Lax I, et al: The role
of radiotherapy in treatment of stage I non-small cell lung cancer.
Lung Cancer. 41:1–11. 2003. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Collins BT, Vahdat S, Erickson K, et al:
Radical cyberknife radiosurgery with tumor tracking: an effective
treatment for inoperable small peripheral stage I non-small cell
lung cancer. J Hematol Oncol. 2:12009. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Sharma SC, Ott JT, Williams JB and Dickow
D: Clinical implications of adopting Monte Carlo treatment planning
for CyberKnife. J App Clin Med Phys. 11:31422010.PubMed/NCBI
|
14.
|
Hoogeman M, Prévost JB, Nuyttens J, et al:
Clinical accuracy of the respiratory tumor tracking system of the
cyberknife: assessment by analysis of log files. Int J Radiat Oncol
Biol Phys. 74:297–303. 2009. View Article : Google Scholar : PubMed/NCBI
|
15.
|
Timmerman R, Paulus R, Galvin J, et al:
Stereotactic body radiation therapy for inoperable early stage lung
cancer. JAMA. 303:1070–1076. 2010. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Whyte RI, Crownover R, Murphy MJ, et al:
Stereotactic radiosurgery for lung tumors: preliminary report of a
phase I trial. Ann Thorac Surg. 75:1097–1101. 2003. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Parkash J: Tumor necrosis factor-α induces
transcriptional activation of nuclear factor-κB in
insulin-producing β-cells. Exp Ther Med. 2:21–26. 2011.
|
18.
|
Unger K, Ju A, Oermann E, et al:
CyberKnife for hilar lung tumors: report of clinical response and
toxicity. J Hematol Oncol. 22:392010. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Brown JM, Diehn M and Loo BW Jr:
Stereotactic ablative radiotherapy should be combined with a
hypoxic cell radiosensitizer. Int J Radiat Oncol Biol Phys.
78:323–327. 2010. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Ballen KK, Colvin G, Dey BR, et al:
Cellular immune therapy for refractory cancers: novel therapeutic
strategies. Exp Hematol. 33:1427–1435. 2005. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Hontscha C, Borck Y, Zhou H, et al:
Clinical trials on CIK cells: first report of the international
registry on CIK cells (IRCC). J Cancer Res Clin Oncol. 137:305–310.
2011. View Article : Google Scholar : PubMed/NCBI
|
22.
|
Schmidt-Wolf GD, Negrin RS and
Schmidt-Wolf IG: Activated T-cells and cytokine-induced
CD3+CD56+ killer cells. Ann Hematol.
74:51–56. 1997. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Leemhuis T, Wells S, Scheffold C, et al: A
phase I trial of autologous cytokine-induced killer cells for the
treatment of relapsed Hodgkin disease and non-Hodgkin lymphoma.
Biol Blood Marrow Transplant. 11:181–187. 2005. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Schmidt-Wolf IG, Negrin RS, Kiem HP, et
al: Use of a SCID mouse/human lymphoma model to evaluate
cytokine-induced killer cells with potent antitumor cell activity.
J Exp Med. 174:139–149. 1991. View Article : Google Scholar
|
25.
|
Baker J, Verneris MR, Ito M, et al:
Expansion of cytolytic CD8(+) natural killer T-cells with limited
capacity for graft-versus-host disease induction due to interferon
gamma production. Blood. 97:2923–2931. 2001.
|
26.
|
Verneris MR, Kornacker M, Mailänder V and
Negrin RS: Resistance of ex vivo expanded
CD3+CD56+ T-cells to Fas-mediated apoptosis.
Cancer Immunol Immunother. 49:335–345. 2000. View Article : Google Scholar : PubMed/NCBI
|