Targeting CD83 for the treatment of graft-versus-host disease (Review)
- Authors:
- Xiongfei Wang
- Ming Q. Wei
- Xiaosong Liu
-
Affiliations: Division of Molecular and Gene Therapies, Griffith Health Institute and School of Medical Science, Griffith University, Gold Coast, Queensland 4222, Australia, Cancer Research Institute, Foshan First People's Hospital, Foshan, Guangdong 528000, P.R. China - Published online on: April 2, 2013 https://doi.org/10.3892/etm.2013.1033
- Pages: 1545-1550
This article is mentioned in:
Abstract
Zhou LJ, Schwarting R, Smith HM and Tedder TF: A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily. J Immunol. 149:735–742. 1992.PubMed/NCBI | |
Breloer M: CD83: regulator of central T cell maturation and peripheral immune response. Immunol Lett. 115:16–17. 2008. View Article : Google Scholar : PubMed/NCBI | |
Prazma CM and Tedder TF: Dendritic cell CD83: a therapeutic target or innocent bystander? Immunol Lett. 115:1–8. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zhu Y, Zhang G, Gao C, Zhong W and Zhang X: CD83-stimulated monocytes suppress T-cell immune responses through production of prostaglandin E2. Proc Natl Acad Sci USA. 108:18778–18783. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ferrara JL, Levine JE, Reddy P and Holler E: Graft-versus-host disease. Lancet. 373:1550–1561. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shlomchik WD, Couzens MS, Tang CB, et al: Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science. 285:412–415. 1999. View Article : Google Scholar : PubMed/NCBI | |
Matte CC, Liu J, Cormier J, et al: Donor APCs are required for maximal GVHD but not for GVL. Nat Med. 10:987–992. 2004. View Article : Google Scholar : PubMed/NCBI | |
Reddy P, Maeda Y, Liu C, Krijanovski OI, Korngold R and Ferrara JL: A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia responses. Nat Med. 11:1244–1249. 2005. View Article : Google Scholar : PubMed/NCBI | |
Merad M, Hoffmann P, Ranheim E, et al: Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versus-host disease. Nat Med. 10:510–517. 2004. View Article : Google Scholar : PubMed/NCBI | |
Markey KA, Banovic T, Kuns RD, et al: Conventional dendritic cells are the critical donor APC presenting alloantigen after experimental bone marrow transplantation. Blood. 113:5644–5649. 2009. View Article : Google Scholar | |
Strober S and Lowsky R: Rare cells predict GVHD. Blood. 119:4820–4821. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gowdy KM, Cardona DM, Nugent JL, et al: Novel role for surfactant protein A in gastrointestinal graft-versus-host disease. J Immunol. 188:4897–4905. 2012. View Article : Google Scholar : PubMed/NCBI | |
Banovic T, Markey KA, Kuns RD, et al: Graft-versus-host disease prevents the maturation of plasmacytoid dendritic cells. J Immunol. 182:912–920. 2009. View Article : Google Scholar : PubMed/NCBI | |
Horváth R, Budinský V, Kayserová J, et al: Kinetics of dendritic cells reconstitution and costimulatory molecules expression after myeloablative allogeneic haematopoetic stem cell transplantation: implications for the development of acute graft-versus host disease. Clin Immunol. 131:60–69. 2009. | |
Reshef R, Luger SM, Hexner EO, et al: Blockade of lymphocyte chemotaxis in visceral graft-versus-host disease. N Engl J Med. 367:135–145. 2012. View Article : Google Scholar : PubMed/NCBI | |
Levine JE, Logan BR, Wu J, et al: Acute graft-versus-host disease biomarkers measured during therapy can predict treatment outcomes: a Blood and Marrow Transplant Clinical Trials Network study. Blood. 119:3854–3860. 2012. View Article : Google Scholar | |
MacMillan ML, DeFor TE and Weisdorf DJ: What predicts high risk acute graft-versus-host disease (GVHD) at onset?: identification of those at highest risk by a novel acute GVHD risk score. Br J Haematol. 157:732–741. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Racke MK and Drew PD: Peroxisome proliferator-activated receptor-alpha agonist fenofibrate regulates IL-12 family cytokine expression in the CNS: relevance to multiple sclerosis. J Neurochem. 103:1801–1810. 2007. View Article : Google Scholar | |
Lechmann M, Kremmer E, Sticht H and Steinkasserer A: Overexpression, purification, and biochemical characterization of the extracellular human CD83 domain and generation of monoclonal antibodies. Protein Expr Purif. 24:445–452. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cao W, Lee SH and Lu J: CD83 is preformed inside monocytes, macrophages and dendritic cells, but it is only stably expressed on activated dendritic cells. Biochem J. 385:85–93. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lechmann M, Krooshoop DJ, Dudziak D, et al: The extracellular domain of CD83 inhibits dendritic cell-mediated T cell stimulation and binds to a ligand on dendritic cells. J Exp Med. 194:1813–1821. 2001. View Article : Google Scholar : PubMed/NCBI | |
Davis SJ, Davies EA, Barclay AN, et al: Ligand binding by the immunoglobulin superfamily recognition molecule CD2 is glycosylation-independent. J Biol Chem. 270:369–375. 1995. View Article : Google Scholar : PubMed/NCBI | |
Su LL, Iwai H, Lin JT and Fathman CG: The transmembrane E3 ligase GRAIL ubiquitinates and degrades CD83 on CD4 T cells. J Immunol. 183:438–444. 2009. View Article : Google Scholar : PubMed/NCBI | |
Piper RC and Luzio JP: Ubiquitin-dependent sorting of integral membrane proteins for degradation in lysosomes. Curr Opin Cell Biol. 19:459–465. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hegde AN and DiAntonio A: Ubiquitin and the synapse. Nat Rev Neurosci. 3:854–861. 2002. View Article : Google Scholar | |
Kretschmer B, Lüthje K, Schneider S, Fleischer B and Breloer M: Engagement of CD83 on B cells modulates B cell function in vivo. J Immunol. 182:2827–2834. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hock BD, Kato M, McKenzie JL and Hart DN: A soluble form of CD83 is released from activated dendritic cells and B lymphocytes, and is detectable in normal human sera. Int Immunol. 13:959–967. 2001. View Article : Google Scholar : PubMed/NCBI | |
Dudziak D, Nimmerjahn F, Bornkamm GW and Laux G: Alternative splicing generates putative soluble CD83 proteins that inhibit T cell proliferation. J Immunol. 174:6672–6676. 2005. View Article : Google Scholar : PubMed/NCBI | |
Colonna M, Nakajima H, Navarro F and López-Botet M: A novel family of Ig-like receptors for HLA class I molecules that modulate function of lymphoid and myeloid cells. J Leukoc Biol. 66:375–381. 1999.PubMed/NCBI | |
Arulanandam AR, Withka JM, Wyss DF, et al: The CD58 (LFA-3) binding site is a localized and highly charged surface area on the AGFCC’C” face of the human CD2 adhesion domain. Proc Natl Acad Sci USA. 90:11613–11617. 1993.PubMed/NCBI | |
Nakaishi A, Hirose M, Yoshimura M, et al: Structural insight into the specific interaction between murine SHPS-1/SIRP alpha and its ligand CD47. J Mol Biol. 375:650–660. 2008. View Article : Google Scholar : PubMed/NCBI | |
Reinwald S, Wiethe C, Westendorf AM, et al: CD83 expression in CD4+ T cells modulates inflammation and autoimmunity. J Immunol. 180:5890–5897. 2008. | |
Fujimoto Y, Tu L, Miller AS, et al: CD83 expression influences CD4+ T cell development in the thymus. Cell. 108:755–767. 2002. | |
Garcia-Martinez LF, Appleby MW, Staehling-Hampton K, et al: A novel mutation in CD83 results in the development of a unique population of CD4+ T cells. J Immunol. 173:2995–3001. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lüthje K, Cramer SO, Ehrlich S, et al: Transgenic expression of a CD83-immunoglobulin fusion protein impairs the development of immune-competent CD4-positive T cells. Eur J Immunol. 36:2035–2045. 2006. | |
Prazma CM, Yazawa N, Fujimoto Y, Fujimoto M and Tedder TF: CD83 expression is a sensitive marker of activation required for B cell and CD4+ T cell longevity in vivo. J Immunol. 179:4550–4562. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kretschmer B, Kuhl S, Fleischer B and Breloer M: Activated T cells induce rapid CD83 expression on B cells by engagement of CD40. Immunol Lett. 136:221–227. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kretschmer B, Lüthje K, Ehrlich S, et al: CD83 on murine APC does not function as a costimulatory receptor for T cells. Immunol Lett. 120:87–95. 2008. View Article : Google Scholar : PubMed/NCBI | |
Prechtel AT, Turza NM, Theodoridis AA and Steinkasserer A: CD83 knockdown in monocyte-derived dendritic cells by small interfering RNA leads to a diminished T cell stimulation. J Immunol. 178:5454–5464. 2007. View Article : Google Scholar : PubMed/NCBI | |
Aerts-Toegaert C, Heirman C, Tuyaerts S, et al: CD83 expression on dendritic cells and T cells: correlation with effective immune responses. Eur J Immunol. 37:686–695. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lechmann M, Shuman N, Wakeham A and Mak TW: The CD83 reporter mouse elucidates the activity of the CD83 promoter in B, T, and dendritic cell populations in vivo. Proc Natl Acad Sci USA. 105:11887–11892. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hock BD, O’Donnell JL, Taylor K, et al: Levels of the soluble forms of CD80, CD86, and CD83 are elevated in the synovial fluid of rheumatoid arthritis patients. Tissue Antigens. 67:57–60. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sénéchal B, Boruchov AM, Reagan JL, Hart DN and Young JW: Infection of mature monocyte-derived dendritic cells with human cytomegalovirus inhibits stimulation of T-cell proliferation via the release of soluble CD83. Blood. 103:4207–4215. 2004.PubMed/NCBI | |
Kruse M, Rosorius O, Krätzer F, et al: Inhibition of CD83 cell surface expression during dendritic cell maturation by interference with nuclear export of CD83 mRNA. J Exp Med. 191:1581–1590. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zinser E and Steinkasserer A: Published studies reporting the efficacy of soluble CD83 in vitro as well as in vivo. Immunol Lett. 115:18–19. 2008. View Article : Google Scholar : PubMed/NCBI | |
Scholler N, Hayden-Ledbetter M, Dahlin A, Hellstrom I, Hellstrom KE and Ledbetter JA: Cutting edge: CD83 regulates the development of cellular immunity. J Immunol. 168:2599–2602. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ge W, Arp J, Lian D, et al: Immunosuppression involving soluble CD83 induces tolerogenic dendritic cells that prevent cardiac allograft rejection. Transplantation. 90:1145–1156. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lan Z, Ge W, Arp J, et al: Induction of kidney allograft tolerance by soluble CD83 associated with prevalence of tolerogenic dendritic cells and indoleamine 2,3-dioxygenase. Transplantation. 90:1286–1293. 2010. View Article : Google Scholar : PubMed/NCBI | |
Villares R, Cadenas V, Lozano M, et al: CCR6 regulates EAE pathogenesis by controlling regulatory CD4+ T-cell recruitment to target tissues. Eur J Immunol. 39:1671–1681. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zinser E, Lechmann M, Golka A, Lutz MB and Steinkasserer A: Prevention and treatment of experimental autoimmune encephalomyelitis by soluble CD83. J Exp Med. 200:345–351. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ma-Krupa W, Jeon MS, Spoerl S, Tedder TF, Goronzy JJ and Weyand CM: Activation of arterial wall dendritic cells and breakdown of self-tolerance in giant cell arteritis. J Exp Med. 199:173–183. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wilson J, Cullup H, Lourie R, et al: Antibody to the dendritic cell surface activation antigen CD83 prevents acute graft-versus-host disease. J Exp Med. 206:387–398. 2009. View Article : Google Scholar : PubMed/NCBI | |
Holler E, Rogler G, Brenmoehl J, et al: Prognostic significance of NOD2/CARD15 variants in HLA-identical sibling hematopoietic stem cell transplantation: effect on long-term outcome is confirmed in 2 independent cohorts and may be modulated by the type of gastrointestinal decontamination. Blood. 107:4189–4193. 2006. View Article : Google Scholar | |
Munster DJ, MacDonald KP, Kato M and Hart DJ: Human T lymphoblasts and activated dendritic cells in the allogeneic mixed leukocyte reaction are susceptible to NK cell-mediated anti-CD83-dependent cytotoxicity. Int Immunol. 16:33–42. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jonuleit H, Tüting T, Steitz J, et al: Efficient transduction of mature CD83+ dendritic cells using recombinant adenovirus suppressed T cell stimulatory capacity. Gene Ther. 7:249–254. 2000. | |
Chen J and Liu XS: Development and function of IL-10 IFN-gamma-secreting CD4(+) T cells. J Leukoc Biol. 86:1305–1310. 2009. | |
Delisle JS, Gaboury L, Bélanger MP, Tassé E, Yagita H and Perreault C: Graft-versus-host disease causes failure of donor hematopoiesis and lymphopoiesis in interferon-gamma receptor-deficient hosts. Blood. 112:2111–2119. 2008. View Article : Google Scholar : PubMed/NCBI |