1
|
Bocanegra A, Bastida S, Benedí J, Nus M,
Sánchez-Montero JM and Sánchez-Muniz FJ: Effect of seaweed and
cholesterol-enriched diets on postprandial lipoproteinaemia in
rats. Br J Nutr. 102:1728–1739. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wada K, Nakamura K, Tamai Y, et al:
Seaweed intake and blood pressure levels in healthy pre-school
Japanese children. Nutr J. 10:832011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Blokhuis TJ and Arts JJ: Bioactive and
osteoinductive bone graft substitutes: definitions, facts and
myths. Injury. 42(Suppl 2): S26–S29. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ahmed HH, Hegazi MM, Abd-Alla HI, Eskander
EF and Ellithey MS: Antitumour and antioxidant activity of some Red
Sea seaweeds in Ehrlich ascites carcinoma in vivo. Z Naturforsch C.
66:367–376. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wijesinghe WA and Jeon YJ: Exploiting
biological activities of brown seaweed Ecklonia cava for
potential industrial applications: a review. Int J Food Sci Nutr.
63:225–235. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Coura CO, de Araújo IW, Vanderlei ES, et
al: Antinociceptive and anti-inflammatory activities of sulphated
polysaccharides from the red seaweed Gracilaria cornea.
Basic Clin Pharmacol Toxicol. 110:335–341. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Siqueira RC, da Silva MS, de Alencar DB,
et al: In vivo anti-inflammatory effect of a sulfated
polysaccharide isolated from the marine brown algae Lobophora
variegata. Pharm Biol. 49:167–174. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yuvaraj N, Kanmani P, Satishkumar R, Paari
A, Pattukumar V and Arul V: Seagrass as a potential source of
natural antioxidant and anti-inflammatory agents. Pharm Biol.
50:458–467. 2012.PubMed/NCBI
|
9
|
Xu HL, Kitajima C, Ito H, et al:
Antidiabetic effect of polyphenols from brown alga Ecklonia
kurome in genetically diabetic KK-A(y) mice. Pharm Biol.
50:393–400. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lee YS, Shin KH, Kim BK and Lee S:
Anti-diabetic activities of fucosterol from Pelvetia
siliquosa. Arch Pharm Res. 27:1120–1122. 2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Albuquerque IR, Queiroz KC, Alves LG,
Santos EA, Leite EL and Rocha HA: Heterofucans from Dictyota
menstrualis have anticoagulant activity. Braz J Med Biol Res.
37:167–171. 2004.
|
12
|
Silva TM, Alves LG, de Queiroz KC, et al:
Partial characterization and anticoagulant activity of a
heterofucan from the brown seaweed Padina gymnospora. Braz J
Med Biol Res. 38:523–533. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bogdanis GC: Effects of physical activity
and inactivity on muscle fatigu. Front Physiol. 3:1422012.
View Article : Google Scholar
|
14
|
Saiki T, Kawai T, Morita K, et al:
Identification of marker genes for differential diagnosis of
chronic fatigue syndrome. Mol Med. 14:599–607. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Finsterer J: Biomarkers of peripheral
muscle fatigue during exercise. BMC Musculoskelet Disord.
13:2182012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Takano R, Hayashi K and Hara S: Highly
methylated agars with a high gel-melting point from the red
seaweed, Gracilaria eucheumoides. Phytochemistry.
40:487–490. 1995. View Article : Google Scholar : PubMed/NCBI
|
17
|
Krishnaiah D, Sarbatly R, Prasad DMR and
Bono A: Mineral content of some seaweeds from Sabah’s south China
sea. Asian J Sci Res. 1:166–170. 2008.
|
18
|
Zhang X, Li H, Wu G, Ban S and Park H:
Extraction of Eupatorium odoratum and its inhibition on
toxic cyanobacteria. J Hainan Norm Uni (Nat Sci). 23:427–432.
2010.(In Chinese).
|
19
|
Jiménez-Escrig A, Gómez-Ordóñez E and
Rupérez P: Seaweed as a source of novel nutraceuticals: sulfated
polysaccharides and peptides. Adv Food Nutr Res. 64:325–337.
2011.PubMed/NCBI
|
20
|
Vera J, Castro J, Gonzalez A and Moenne A:
Seaweed polysaccharides and derived oligosaccharides stimulate
defense responses and protection against pathogens in plants. Mar
Drugs. 9:2514–2525. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lewis AS: Organic versus inorganic arsenic
in herbal kelp supplements. Environ Health Perspect. 115:A5752007.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Sun XW, Weng HX and Qin YC: Release of
bioactive active iodine in kelp. J Environ Sci (China). 17:241–244.
2005.PubMed/NCBI
|
23
|
Greenberg CC, Jurczak MJ, Danos AM and
Brady MJ: Glycogen branches out: new perspectives on the role of
glycogen metabolism in the integration of metabolic pathways. Am J
Physiol Endocrinol Metab. 291:E1–E8. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Brook GA, Dubouchard H, Brown M, Sicurello
JP and Butz CE: Role of mitochondrial lactate dehydrogenase and
lactate oxidation in the intracellular lactate shuttle. Proc Natl
Acad Sci USA. 96:1129–1134. 1999. View Article : Google Scholar : PubMed/NCBI
|
25
|
Scott CB: Contribution of anaerobic energy
expenditure to whole body thermogenesis. Nutr Metab (Lond).
2:142005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Heidrich F, Schotola H, Popov AF, et al:
AMPK - activated protein kinase and its role in energy metabolism
of the heart. Curr Cardiol Rev. 6:337–342. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Oakhill JS, Steel R, Chen ZP, et al: AMPK
is a direct adenylate charge-regulated protein kinase. Science.
332:1433–1435. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Song H, Guang Y, Zhang L, Li K and Dong C:
SPARC interacts with AMPK and regulates GLUT4 expression. Biochem
Biophys Res Commun. 396:961–966. 2010. View Article : Google Scholar : PubMed/NCBI
|