1.
|
Scherrer U, Rexhaj E, Jayet PY, Allemann Y
and Sartori C: New insights in the pathogenesis of high-altitude
pulmonary edema. Prog Cardiovasc Dis. 52:485–492. 2010. View Article : Google Scholar : PubMed/NCBI
|
2.
|
Duplain H, Vollenweider L, Delabays A,
Nicod P, Bärtsch P and Scherrer U: Augmented sympathetic activation
during short-term hypoxia and high-altitude exposure in subjects
susceptible to high-altitude pulmonary edema. Circulation.
99:1713–1718. 1999. View Article : Google Scholar : PubMed/NCBI
|
3.
|
Duplain H, Sartori C, Lepori M, et al:
Exhaled nitric oxide in high-altitude pulmonary edema: role in the
regulation of pulmonary vascular tone and evidence for a role
against inflammation. Am J Respir Crit Care Med. 162:221–224. 2000.
View Article : Google Scholar : PubMed/NCBI
|
4.
|
Bailey DM, Dehnert C, Luks AM, et al:
High-altitude pulmonary hypertension is associated with a free
radical-mediated reduction in pulmonary nitric oxide
bioavailability. J Physiol. 588:4837–4847. 2010. View Article : Google Scholar : PubMed/NCBI
|
5.
|
Pham I, Wuerzner G, Richalet JP, et al:
Endothelin receptors blockade blunts hypoxia-induced increase in
PAP in humans. Eur J Clin Invest. 40:195–202. 2010. View Article : Google Scholar : PubMed/NCBI
|
6.
|
Sartori C, Vollenweider L, Löffler BM, et
al: Exaggerated endothelin release in high-altitude pulmonary
edema. Circulation. 99:2665–2668. 1999. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Christou H, Yoshida A, Arthur V, Morita T
and Kourembanas S: Increased vascular endothelial growth factor
production in the lungs of rats with hypoxia-induced pulmonary
hypertension. Am J Respir Cell Mol Biol. 18:768–776. 1998.
View Article : Google Scholar : PubMed/NCBI
|
8.
|
Nakanishi K, Tajima F, Itoh H, et al:
Changes in atrial natriuretic peptide and brain natriuretic peptide
associated with hypobaric hypoxia induced pulmonary hypertension in
rats. Virchows Arch. 439:808–817. 2001. View Article : Google Scholar : PubMed/NCBI
|
9.
|
Weidemann A, Klanke B, Wagner M, et al:
Hypoxia, via stabilization of the hypoxia-inducible factor
HIF-1alpha, is a direct and sufficient stimulus for brain-type
natriuretic peptide induction. Biochem J. 409:233–242. 2008.
View Article : Google Scholar : PubMed/NCBI
|
10.
|
Klinger JR, Thaker S, Houtchens J, Preston
IR, Hill NS and Farber HW: Pulmonary hemodynamic responses to brain
natriuretic peptide and sildenafil in patients with pulmonary
arterial hypertension. Chest. 129:417–425. 2006. View Article : Google Scholar : PubMed/NCBI
|
11.
|
McGrath MF, de Bold ML and de Bold AJ: The
endocrine function of the heart. Trends Endocrinol Metab.
16:469–477. 2005. View Article : Google Scholar : PubMed/NCBI
|
12.
|
Kishimoto I, Tokudome T, Horio T, Garbers
DL, Nakao K and Kangawa K: Natriuretic peptide signaling via
guanylyl cyclase (GC)-A: an endogenous protective mechanism of the
heart. Curr Cardiol Rev. 5:45–51. 2009. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Hackett PH and Oelz O: The Lake Louise
consensus on the definition and quantification of altitude illness.
Mountain Medicine Hypoxia. Sutton JR, Houston CS and Coates G: VT:
Queen City Printers; Burlington: pp. 327–330. 1992
|
14.
|
Ge RL, Mo VY, Januzzi JL, et al: B-type
natriuretic peptide, vascular endothelial growth factor,
endothelin-1, and nitric oxide synthase in chronic mountain
sickness. Am J Physiol Heart Circ Physiol. 300:H1427–H1433. 2011.
View Article : Google Scholar : PubMed/NCBI
|
15.
|
Palazzuoli A, Calabria P, Vecchiato L, et
al: Plasma brain natriuretic peptide levels in coronary heart
disease with preserved systolic function. Clin Exp Med. 4:44–49.
2004. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Casals G, Ros J, Sionis A, Davidson MM,
Morales-Ruiz M and Jiménez W: Hypoxia induces B-type natriuretic
peptide release in cell lines derived from human cardiomyocytes. Am
J Physiol Heart Circ Physiol. 297:H550–H555. 2009. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Xia WJ, Huang YY, Chen YL, Chen SL and He
JG: Acute myocardial ischemia directly modulates the expression of
brain natriuretic peptide at the transcriptional and translational
levels via inflammatory cytokines. Eur J Pharmacol. 670:7–12. 2011.
View Article : Google Scholar
|
18.
|
Lemus-Varela ML, Flores-Soto ME,
Cervantes-Munguía R, et al: Expression of HIF-1 alpha, VEGF and EPO
in peripheral blood from patients with two cardiac abnormalities
associated with hypoxia. Clin Biochem. 43:234–239. 2010. View Article : Google Scholar : PubMed/NCBI
|
19.
|
Steiner J and Guglin M: BNP or NT-proBNP?
A clinician’s perspective. Int J Cardiol. 129:5–14. 2008.
|
20.
|
Kaufmann BA, Bernheim AM, Kiencke S, et
al: Evidence supportive of impaired myocardial blood flow reserve
at high-altitude in subjects developing high-altitude pulmonary
edema. Am J Physiol Heart Circ Physiol. 294:H1651–H1657. 2008.
View Article : Google Scholar : PubMed/NCBI
|
21.
|
Mahmud E, Raisinghani A, Hassankhani A, et
al: Correlation of left ventricular diastolic filling
characteristics with right ventricular overload and pulmonary
artery pressure in chronic thromboembolic pulmonary hypertension. J
Am Coll Cardiol. 40:318–324. 2002. View Article : Google Scholar
|
22.
|
Allemann Y, Rotter M, Hutter D, et al:
Impact of acute hypoxic pulmonary hypertension on LV diastolic
function in healthy mountaineers at high altitude. Am J Physiol
Heart Circ Physiol. 286:H856–H862. 2004. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Mason NP, Petersen M, Melot C, et al:
Serial changes in nasal potential difference and lung electrical
impedance tomography at high-altitude. J Appl Physiol.
94:2043–2050. 2003. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Toshner MR, Thompson AA, Irving JB, et al:
NT-proBNP does not rise on acute ascent to high-altitude. High Alt
Med Biol. 9:307–310. 2008. View Article : Google Scholar : PubMed/NCBI
|
25.
|
Feddersen B, Ausserer H, Haditsch B,
Frisch H, Noachtar S and Straube A: Brain natriuretic peptide at
altitude: relationship to diuresis, natriuresis, and mountain
sickness. Aviat Space Environ Med. 80:108–111. 2009. View Article : Google Scholar : PubMed/NCBI
|
26.
|
Woods D, Hooper T, Hodkinson P, et al:
Effects of altitude exposure on brain natriuretic peptide in
humans. Eur J Appl Physiol. 111:2687–2693. 2011. View Article : Google Scholar : PubMed/NCBI
|
27.
|
Woods DR, Begley J, Stacey M, Smith C,
Boos CJ, Hooper T, Hawkins A, Hodkinson P, Green N and Mellor A:
Severe acute mountain sickness, brain natriuretic peptide and
NT-proBNP in humans. Acta Physiol (Oxf). 205:349–355. 2012.
View Article : Google Scholar : PubMed/NCBI
|
28.
|
Yoshimura M, Yasue H and Ogawa H:
Pathophysiological significance and clinical application of ANP and
BNP in patients with heart failure. Can J Physiol Pharmacol.
79:730–735. 2001. View
Article : Google Scholar : PubMed/NCBI
|
29.
|
Leuchte HH, Holzapfel M, Baumgartner RA,
Neurohr C, Vogeser M and Behr J: Characterization of brain
natriuretic peptide in long-term follow-up of pulmonary arterial
hypertension. Chest. 128:2368–2374. 2005. View Article : Google Scholar : PubMed/NCBI
|
30.
|
McGrath MF, de Bold ML and de Bold AJ: The
endocrine function of the heart. Trends Endocrinol Metab.
16:469–477. 2005. View Article : Google Scholar : PubMed/NCBI
|