Mechanism of blood‑retinal barrier breakdown induced by HIV‑1 (Review)
- Authors:
- Xin Che
- Xian‑Qun Fan
- Zhi‑Liang Wang
-
Affiliations: Department of Ophthalmology, Ninth People's Hospital Affiliated with Shanghai Jiaotong University, Shanghai 200011, P.R. China - Published online on: February 6, 2014 https://doi.org/10.3892/etm.2014.1521
- Pages: 768-772
This article is mentioned in:
Abstract
![]() |
![]() |
Han Y, Wu N, Zhu W, Li Y, Zuo L, Ye J, Qiu Z, Xie J and Li T: Detection of HIV-1 viruses in tears of patients even under long-term HAART. Aids. 25:1925–1927. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fujikawa LS, Salahuddin SZ, Palestine AG, Masur H, Nussenblatt RB and Gallo RC: Isolation of human T-lymphotropic virus type III from the tears of a patient with the acquired immunodeficiency syndrome. Lancet. 2:529–530. 1985. View Article : Google Scholar : PubMed/NCBI | |
Tervo T, Lähdevirta J, Vaheri A, Valle SL and Suni J: Recovery of HTLV-III from contact lenses. Lancet. 1:379–380. 1986. View Article : Google Scholar : PubMed/NCBI | |
Ablashi DV, Sturzenegger S, Hunter EA, Palestine AG, Fujikawa LS, Kim MK, Nussenblatt RB, Markham PD and Salahuddin SZ: Presence of HTLV-III in tears and cells from the eyes of AIDS patients. J Exp Pathol. 3:693–703. 1987.PubMed/NCBI | |
Pathanapitoon K, Riemens A, Kongyai N, Sirirungsi W, Leechanachai P, Ausayakhun S, Kalinina Ayuso V, Kunavisarut P, de Groot-Mijnes JD and Rothova A: Intraocular and plasma HIV-1 RNA loads and HIV uveitis. Aids. 25:81–86. 2011. View Article : Google Scholar : PubMed/NCBI | |
González-Scarano F and Martín-García J: The neuropathogenesis of AIDS. Nat Rev Immunol. 5:69–81. 2005. | |
Persidsky Y and Poluektova L: Immune privilege and HIV-1 persistence in the CNS. Immunol Rev. 213:180–194. 2006. View Article : Google Scholar : PubMed/NCBI | |
De Luca A, Ciancio BC, Larussa D, Murri R, Cingolani A, Rizzo MG, Giancola ML, Ammassari A and Ortona L: Correlates of independent HIV-1 replication in the CNS and of its control by antiretrovirals. Neurology. 59:342–347. 2002.PubMed/NCBI | |
Bai L, Zhang Z, Zhang H, Li X, Yu Q, Lin H and Yang W: HIV-1 Tat protein alter the tight junction integrity and function of retinal pigment epithelium: an in vitro study. BMC Infect Dis. 8:772008. View Article : Google Scholar : PubMed/NCBI | |
Pomerantz RJ, Kuritzkes DR, de la Monte SM, Rota TR, Baker AS, Albert D, Bor DH, Feldman EL, Schooley RT and Hirsch MS: Infection of the retina by human immunodeficiency virus type I. N Engl J Med. 317:1643–1647. 1987. View Article : Google Scholar : PubMed/NCBI | |
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR and Begley DJ: Structure and function of the blood-brain barrier. Neurobiol Dis. 37:13–25. 2010. View Article : Google Scholar | |
Wislocki GB and Ladman AJ: The demonstration of a blood-ocular barrier in the albino rat by means of the intravitam deposition of silver. J Biophys Biochem Cytol. 1:501–510. 1955. View Article : Google Scholar : PubMed/NCBI | |
Engelhardt B and Sorokin L: The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol. 31:497–511. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cunha-Vaz JG: The blood-ocular barriers: past, present, and future. Doc Ophthalmol. 93:149–157. 1997. View Article : Google Scholar : PubMed/NCBI | |
Fanning AS, Mitic LL and Anderson JM: Transmembrane proteins in the tight junction barrier. J Am Soc Nephrol. 10:1337–1345. 1999.PubMed/NCBI | |
Hawkins BT and Davis TP: The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 57:173–185. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stamatovic SM, Keep RF and Andjelkovic AV: Brain endothelial cell-cell junctions: how to ‘open’ the blood brain barrier. Curr Neuropharmacol. 6:179–192. 2008. | |
Contreras-Ruiz L, Schulze U, García-Posadas L, Arranz-Valsero I, López-García A, Paulsen F and Diebold Y: Structural and functional alteration of corneal epithelial barrier under inflammatory conditions. Curr Eye Res. 37:971–981. 2012. View Article : Google Scholar : PubMed/NCBI | |
Morita K, Sasaki H, Furuse M and Tsukita S: Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol. 147:185–194. 1999. View Article : Google Scholar : PubMed/NCBI | |
Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M and Tsukita S: Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol. 161:653–660. 2003. View Article : Google Scholar : PubMed/NCBI | |
Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM and Gardner TW; Penn State Retina Research Group. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Diabetes. 47:1953–1959. 1998. View Article : Google Scholar | |
Peng S, Adelman RA and Rizzolo LJ: Minimal effects of VEGF and anti-VEGF drugs on the permeability or selectivity of RPE tight junctions. Invest Ophthalmol Vis Sci. 51:3216–3225. 2010. View Article : Google Scholar : PubMed/NCBI | |
Harhaj NS and Antonetti DA: Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol. 36:1206–1237. 2004. View Article : Google Scholar : PubMed/NCBI | |
Feldman GJ, Mullin JM and Ryan MP: Occludin: structure, function and regulation. Adv Drug Deliv Rev. 57:883–917. 2005. View Article : Google Scholar : PubMed/NCBI | |
Erickson KK, Sundstrom JM and Antonetti DA: Vascular permeability in ocular disease and the role of tight junctions. Angiogenesis. 10:103–117. 2007. View Article : Google Scholar : PubMed/NCBI | |
Behzadian MA, Windsor LJ, Ghaly N, Liou G, Tsai NT and Caldwell RB: VEGF-induced paracellular permeability in cultured endothelial cells involves urokinase and its receptor. FASEB J. 17:752–754. 2003.PubMed/NCBI | |
Chehade JM, Haas MJ and Mooradian AD: Diabetes-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1) expression. Neurochem Res. 27:249–252. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fischer S, Wobben M, Marti HH, Renz D and Schaper W: Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res. 63:70–80. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jin M, Barron E, He S, Ryan SJ and Hinton DR: Regulation of RPE intercellular junction integrity and function by hepatocyte growth factor. Invest Ophthalmol Vis Sci. 43:2782–2790. 2002.PubMed/NCBI | |
Lum H and Malik AB: Regulation of vascular endothelial barrier function. Am J Physiol. 267:L223–L241. 1994.PubMed/NCBI | |
Davidson DC, Hirschman MP, Sun A, Singh MV, Kasischke K and Maggirwar SB: Excess soluble CD40L contributes to blood brain barrier permeability in vivo: implications for HIV-associated neurocognitive disorders. PloS One. 7:e517932012. View Article : Google Scholar : PubMed/NCBI | |
Albini A, Benelli R, Presta M, Rusnati M, Ziche M, Rubartelli A, Paglialunga G, Bussolino F and Noonan D: HIV-tat protein is a heparin-binding angiogenic growth factor. Oncogene. 12:289–297. 1996.PubMed/NCBI | |
Wennerberg K, Rossman KL and Der CJ: The Ras superfamily at a glance. J Cell Sci. 118:843–846. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cohen AW, Hnasko R, Schubert W and Lisanti MP: Role of caveolae and caveolins in health and disease. Physiol Rev. 84:1341–1379. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Zhang B, Eum SY and Toborek M: HIV-1 Tat triggers nuclear localization of ZO-1 via Rho signaling and cAMP response element-binding protein activation. J Neurosci. 32:143–150. 2012. View Article : Google Scholar | |
Lin S, Wang XM, Nadeau PE and Mergia A: HIV infection upregulates caveolin 1 expression to restrict virus production. J Virol. 84:9487–9496. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nag S, Venugopalan R and Stewart DJ: Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown. Acta Neuropathol. 114:459–469. 2007. View Article : Google Scholar : PubMed/NCBI | |
Clark IM, Swingler TE, Sampieri CL and Edwards DR: The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol. 40:1362–1378. 2008. View Article : Google Scholar : PubMed/NCBI | |
Feng S, Cen J, Huang Y, Shen H, Yao L, Wang Y and Chen Z: Matrix metalloproteinase-2 and −9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PloS One. 6:e205992011. | |
Yang Y, Estrada EY, Thompson JF, Liu W and Rosenberg GA: Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab. 27:697–709. 2007. | |
Gurney KJ, Estrada EY and Rosenberg GA: Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis. 23:87–96. 2006. View Article : Google Scholar : PubMed/NCBI | |
Reijerkerk A, Kooij G, van der Pol SM, Khazen S, Dijkstra CD and de Vries HE: Diapedesis of monocytes is associated with MMP-mediated occludin disappearance in brain endothelial cells. FASEB J. 20:2550–2552. 2006. View Article : Google Scholar : PubMed/NCBI | |
McCoig C, Castrejon MM, Saavedra-Lozano J, Castano E, Baez C, Lanier ER, Saez-Llorens X and Ramilo O: Cerebrospinal fluid and plasma concentrations of proinflammatory mediators in human immunodeficiency virus-infected children. Pediatr Infect Dis J. 23:114–118. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sporer B, Paul R, Koedel U, Grimm R, Wick M, Goebel FD and Pfister HW: Presence of matrix metalloproteinase-9 activity in the cerebrospinal fluid of human immunodeficiency virus-infected patients. J Infect Dis. 178:854–857. 1998. View Article : Google Scholar : PubMed/NCBI | |
Persidsky Y, Limoges J, Rasmussen J, Zheng J, Gearing A and Gendelman HE: Reduction in glial immunity and neuropathology by a PAF antagonist and an MMP and TNFalpha inhibitor in SCID mice with HIV-1 encephalitis. J Neuroimmunol. 114:57–68. 2001. View Article : Google Scholar : PubMed/NCBI | |
Louboutin JP and Strayer DS: Blood-brain barrier abnormalities caused by HIV-1 gp120: mechanistic and therapeutic implications. Scientific World Journal. 2012:4825752012. View Article : Google Scholar : PubMed/NCBI | |
Xu R, Feng X, Xie X, Zhang J, Wu D and Xu L: HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9. Brain Res. 1436:13–19. 2012. View Article : Google Scholar | |
Giebel SJ, Menicucci G, McGuire PG and Das A: Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab Invest. 85:597–607. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lai CH, Kuo KH and Leo JM: Critical role of actin in modulating BBB permeability. Brain Res Brain Res Rev. 50:7–13. 2005. View Article : Google Scholar : PubMed/NCBI | |
Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI, van der Pol S, Weksler BB, Romero IA, Couraud PO, Piontek J, et al: Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J. 21:3666–3676. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hicks K, O’Neil RG, Dubinsky WS and Brown RC: TRPC-mediated actin-myosin contraction is critical for BBB disruption following hypoxic stress. Am J Physiol Cell Physiol. 298:C1583–C1593. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bruban J, Glotin AL, Dinet V, Chalour N, Sennlaub F, Jonet L, An N, Faussat AM and Mascarelli F: Amyloid-beta(1–42) alters structure and function of retinal pigmented epithelial cells. Aging Cell. 8:162–177. 2009. | |
D’Addario M, Wainberg MA and Hiscott J: Activation of cytokine genes in HIV-1 infected myelomonoblastic cells by phorbol ester and tumor necrosis factor. J Immunol. 148:1222–1229. 1992.PubMed/NCBI | |
Mohammad G, Siddiquei MM, Othman A, Al-Shabrawey M and Abu El-Asrar AM: High-mobility group box-1 protein activates inflammatory signaling pathway components and disrupts retinal vascular-barrier in the diabetic retina. Exp Eye Res. 107:101–109. 2013. View Article : Google Scholar | |
Keshari RS, Jyoti A, Dubey M, Kothari N, Kohli M, Bogra J, Barthwal MK and Dikshit M: Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PloS One. 7:e481112012. View Article : Google Scholar : PubMed/NCBI | |
Weiss JM, Nath A, Major EO and Berman JW: HIV-1 Tat induces monocyte chemoattractant protein-1-mediated monocyte transmigration across a model of the human blood-brain barrier and up-regulates CCR5 expression on human monocytes. J Immunol. 163:2953–2959. 1999. | |
Pu H, Tian J, Andras IE, Hayashi K, Flora G, Hennig B and Toborek M: HIV-1 Tat protein-induced alterations of ZO-1 expression are mediated by redox-regulated ERK 1/2 activation. J Cereb Blood Flow Metab. 25:1325–1335. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mankertz J, Tavalali S, Schmitz H, Mankertz A, Riecken EO, Fromm M and Schulzke JD: Expression from the human occludin promoter is affected by tumor necrosis factor alpha and interferon gamma. J Cell Sci. 113:2085–2090. 2000.PubMed/NCBI |