1
|
Han Y, Wu N, Zhu W, Li Y, Zuo L, Ye J, Qiu
Z, Xie J and Li T: Detection of HIV-1 viruses in tears of patients
even under long-term HAART. Aids. 25:1925–1927. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Fujikawa LS, Salahuddin SZ, Palestine AG,
Masur H, Nussenblatt RB and Gallo RC: Isolation of human
T-lymphotropic virus type III from the tears of a patient with the
acquired immunodeficiency syndrome. Lancet. 2:529–530. 1985.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Tervo T, Lähdevirta J, Vaheri A, Valle SL
and Suni J: Recovery of HTLV-III from contact lenses. Lancet.
1:379–380. 1986. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ablashi DV, Sturzenegger S, Hunter EA,
Palestine AG, Fujikawa LS, Kim MK, Nussenblatt RB, Markham PD and
Salahuddin SZ: Presence of HTLV-III in tears and cells from the
eyes of AIDS patients. J Exp Pathol. 3:693–703. 1987.PubMed/NCBI
|
5
|
Pathanapitoon K, Riemens A, Kongyai N,
Sirirungsi W, Leechanachai P, Ausayakhun S, Kalinina Ayuso V,
Kunavisarut P, de Groot-Mijnes JD and Rothova A: Intraocular and
plasma HIV-1 RNA loads and HIV uveitis. Aids. 25:81–86. 2011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
González-Scarano F and Martín-García J:
The neuropathogenesis of AIDS. Nat Rev Immunol. 5:69–81. 2005.
|
7
|
Persidsky Y and Poluektova L: Immune
privilege and HIV-1 persistence in the CNS. Immunol Rev.
213:180–194. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
De Luca A, Ciancio BC, Larussa D, Murri R,
Cingolani A, Rizzo MG, Giancola ML, Ammassari A and Ortona L:
Correlates of independent HIV-1 replication in the CNS and of its
control by antiretrovirals. Neurology. 59:342–347. 2002.PubMed/NCBI
|
9
|
Bai L, Zhang Z, Zhang H, Li X, Yu Q, Lin H
and Yang W: HIV-1 Tat protein alter the tight junction integrity
and function of retinal pigment epithelium: an in vitro study. BMC
Infect Dis. 8:772008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pomerantz RJ, Kuritzkes DR, de la Monte
SM, Rota TR, Baker AS, Albert D, Bor DH, Feldman EL, Schooley RT
and Hirsch MS: Infection of the retina by human immunodeficiency
virus type I. N Engl J Med. 317:1643–1647. 1987. View Article : Google Scholar : PubMed/NCBI
|
11
|
Abbott NJ, Patabendige AA, Dolman DE,
Yusof SR and Begley DJ: Structure and function of the blood-brain
barrier. Neurobiol Dis. 37:13–25. 2010. View Article : Google Scholar
|
12
|
Wislocki GB and Ladman AJ: The
demonstration of a blood-ocular barrier in the albino rat by means
of the intravitam deposition of silver. J Biophys Biochem Cytol.
1:501–510. 1955. View Article : Google Scholar : PubMed/NCBI
|
13
|
Engelhardt B and Sorokin L: The
blood-brain and the blood-cerebrospinal fluid barriers: function
and dysfunction. Semin Immunopathol. 31:497–511. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cunha-Vaz JG: The blood-ocular barriers:
past, present, and future. Doc Ophthalmol. 93:149–157. 1997.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Fanning AS, Mitic LL and Anderson JM:
Transmembrane proteins in the tight junction barrier. J Am Soc
Nephrol. 10:1337–1345. 1999.PubMed/NCBI
|
16
|
Hawkins BT and Davis TP: The blood-brain
barrier/neurovascular unit in health and disease. Pharmacol Rev.
57:173–185. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Stamatovic SM, Keep RF and Andjelkovic AV:
Brain endothelial cell-cell junctions: how to ‘open’ the blood
brain barrier. Curr Neuropharmacol. 6:179–192. 2008.
|
18
|
Contreras-Ruiz L, Schulze U,
García-Posadas L, Arranz-Valsero I, López-García A, Paulsen F and
Diebold Y: Structural and functional alteration of corneal
epithelial barrier under inflammatory conditions. Curr Eye Res.
37:971–981. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Morita K, Sasaki H, Furuse M and Tsukita
S: Endothelial claudin: claudin-5/TMVCF constitutes tight junction
strands in endothelial cells. J Cell Biol. 147:185–194. 1999.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H,
Hashimoto N, Furuse M and Tsukita S: Size-selective loosening of
the blood-brain barrier in claudin-5-deficient mice. J Cell Biol.
161:653–660. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Antonetti DA, Barber AJ, Khin S, Lieth E,
Tarbell JM and Gardner TW; Penn State Retina Research Group.
Vascular permeability in experimental diabetes is associated with
reduced endothelial occludin content: vascular endothelial growth
factor decreases occludin in retinal endothelial cells. Diabetes.
47:1953–1959. 1998. View Article : Google Scholar
|
22
|
Peng S, Adelman RA and Rizzolo LJ: Minimal
effects of VEGF and anti-VEGF drugs on the permeability or
selectivity of RPE tight junctions. Invest Ophthalmol Vis Sci.
51:3216–3225. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Harhaj NS and Antonetti DA: Regulation of
tight junctions and loss of barrier function in pathophysiology.
Int J Biochem Cell Biol. 36:1206–1237. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Feldman GJ, Mullin JM and Ryan MP:
Occludin: structure, function and regulation. Adv Drug Deliv Rev.
57:883–917. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Erickson KK, Sundstrom JM and Antonetti
DA: Vascular permeability in ocular disease and the role of tight
junctions. Angiogenesis. 10:103–117. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Behzadian MA, Windsor LJ, Ghaly N, Liou G,
Tsai NT and Caldwell RB: VEGF-induced paracellular permeability in
cultured endothelial cells involves urokinase and its receptor.
FASEB J. 17:752–754. 2003.PubMed/NCBI
|
27
|
Chehade JM, Haas MJ and Mooradian AD:
Diabetes-related changes in rat cerebral occludin and zonula
occludens-1 (ZO-1) expression. Neurochem Res. 27:249–252. 2002.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Fischer S, Wobben M, Marti HH, Renz D and
Schaper W: Hypoxia-induced hyperpermeability in brain microvessel
endothelial cells involves VEGF-mediated changes in the expression
of zonula occludens-1. Microvasc Res. 63:70–80. 2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Jin M, Barron E, He S, Ryan SJ and Hinton
DR: Regulation of RPE intercellular junction integrity and function
by hepatocyte growth factor. Invest Ophthalmol Vis Sci.
43:2782–2790. 2002.PubMed/NCBI
|
30
|
Lum H and Malik AB: Regulation of vascular
endothelial barrier function. Am J Physiol. 267:L223–L241.
1994.PubMed/NCBI
|
31
|
Davidson DC, Hirschman MP, Sun A, Singh
MV, Kasischke K and Maggirwar SB: Excess soluble CD40L contributes
to blood brain barrier permeability in vivo: implications for
HIV-associated neurocognitive disorders. PloS One. 7:e517932012.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Albini A, Benelli R, Presta M, Rusnati M,
Ziche M, Rubartelli A, Paglialunga G, Bussolino F and Noonan D:
HIV-tat protein is a heparin-binding angiogenic growth factor.
Oncogene. 12:289–297. 1996.PubMed/NCBI
|
33
|
Wennerberg K, Rossman KL and Der CJ: The
Ras superfamily at a glance. J Cell Sci. 118:843–846. 2005.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Cohen AW, Hnasko R, Schubert W and Lisanti
MP: Role of caveolae and caveolins in health and disease. Physiol
Rev. 84:1341–1379. 2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhong Y, Zhang B, Eum SY and Toborek M:
HIV-1 Tat triggers nuclear localization of ZO-1 via Rho signaling
and cAMP response element-binding protein activation. J Neurosci.
32:143–150. 2012. View Article : Google Scholar
|
36
|
Lin S, Wang XM, Nadeau PE and Mergia A:
HIV infection upregulates caveolin 1 expression to restrict virus
production. J Virol. 84:9487–9496. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nag S, Venugopalan R and Stewart DJ:
Increased caveolin-1 expression precedes decreased expression of
occludin and claudin-5 during blood-brain barrier breakdown. Acta
Neuropathol. 114:459–469. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Clark IM, Swingler TE, Sampieri CL and
Edwards DR: The regulation of matrix metalloproteinases and their
inhibitors. Int J Biochem Cell Biol. 40:1362–1378. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Feng S, Cen J, Huang Y, Shen H, Yao L,
Wang Y and Chen Z: Matrix metalloproteinase-2 and −9 secreted by
leukemic cells increase the permeability of blood-brain barrier by
disrupting tight junction proteins. PloS One. 6:e205992011.
|
40
|
Yang Y, Estrada EY, Thompson JF, Liu W and
Rosenberg GA: Matrix metalloproteinase-mediated disruption of tight
junction proteins in cerebral vessels is reversed by synthetic
matrix metalloproteinase inhibitor in focal ischemia in rat. J
Cereb Blood Flow Metab. 27:697–709. 2007.
|
41
|
Gurney KJ, Estrada EY and Rosenberg GA:
Blood-brain barrier disruption by stromelysin-1 facilitates
neutrophil infiltration in neuroinflammation. Neurobiol Dis.
23:87–96. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Reijerkerk A, Kooij G, van der Pol SM,
Khazen S, Dijkstra CD and de Vries HE: Diapedesis of monocytes is
associated with MMP-mediated occludin disappearance in brain
endothelial cells. FASEB J. 20:2550–2552. 2006. View Article : Google Scholar : PubMed/NCBI
|
43
|
McCoig C, Castrejon MM, Saavedra-Lozano J,
Castano E, Baez C, Lanier ER, Saez-Llorens X and Ramilo O:
Cerebrospinal fluid and plasma concentrations of proinflammatory
mediators in human immunodeficiency virus-infected children.
Pediatr Infect Dis J. 23:114–118. 2004. View Article : Google Scholar : PubMed/NCBI
|
44
|
Sporer B, Paul R, Koedel U, Grimm R, Wick
M, Goebel FD and Pfister HW: Presence of matrix metalloproteinase-9
activity in the cerebrospinal fluid of human immunodeficiency
virus-infected patients. J Infect Dis. 178:854–857. 1998.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Persidsky Y, Limoges J, Rasmussen J, Zheng
J, Gearing A and Gendelman HE: Reduction in glial immunity and
neuropathology by a PAF antagonist and an MMP and TNFalpha
inhibitor in SCID mice with HIV-1 encephalitis. J Neuroimmunol.
114:57–68. 2001. View Article : Google Scholar : PubMed/NCBI
|
46
|
Louboutin JP and Strayer DS: Blood-brain
barrier abnormalities caused by HIV-1 gp120: mechanistic and
therapeutic implications. Scientific World Journal.
2012:4825752012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Xu R, Feng X, Xie X, Zhang J, Wu D and Xu
L: HIV-1 Tat protein increases the permeability of brain
endothelial cells by both inhibiting occludin expression and
cleaving occludin via matrix metalloproteinase-9. Brain Res.
1436:13–19. 2012. View Article : Google Scholar
|
48
|
Giebel SJ, Menicucci G, McGuire PG and Das
A: Matrix metalloproteinases in early diabetic retinopathy and
their role in alteration of the blood-retinal barrier. Lab Invest.
85:597–607. 2005. View Article : Google Scholar : PubMed/NCBI
|
49
|
Lai CH, Kuo KH and Leo JM: Critical role
of actin in modulating BBB permeability. Brain Res Brain Res Rev.
50:7–13. 2005. View Article : Google Scholar : PubMed/NCBI
|
50
|
Schreibelt G, Kooij G, Reijerkerk A, van
Doorn R, Gringhuis SI, van der Pol S, Weksler BB, Romero IA,
Couraud PO, Piontek J, et al: Reactive oxygen species alter brain
endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB
signaling. FASEB J. 21:3666–3676. 2007. View Article : Google Scholar : PubMed/NCBI
|
51
|
Hicks K, O’Neil RG, Dubinsky WS and Brown
RC: TRPC-mediated actin-myosin contraction is critical for BBB
disruption following hypoxic stress. Am J Physiol Cell Physiol.
298:C1583–C1593. 2010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Bruban J, Glotin AL, Dinet V, Chalour N,
Sennlaub F, Jonet L, An N, Faussat AM and Mascarelli F:
Amyloid-beta(1–42) alters structure and function of retinal
pigmented epithelial cells. Aging Cell. 8:162–177. 2009.
|
53
|
D’Addario M, Wainberg MA and Hiscott J:
Activation of cytokine genes in HIV-1 infected myelomonoblastic
cells by phorbol ester and tumor necrosis factor. J Immunol.
148:1222–1229. 1992.PubMed/NCBI
|
54
|
Mohammad G, Siddiquei MM, Othman A,
Al-Shabrawey M and Abu El-Asrar AM: High-mobility group box-1
protein activates inflammatory signaling pathway components and
disrupts retinal vascular-barrier in the diabetic retina. Exp Eye
Res. 107:101–109. 2013. View Article : Google Scholar
|
55
|
Keshari RS, Jyoti A, Dubey M, Kothari N,
Kohli M, Bogra J, Barthwal MK and Dikshit M: Cytokines induced
neutrophil extracellular traps formation: implication for the
inflammatory disease condition. PloS One. 7:e481112012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Weiss JM, Nath A, Major EO and Berman JW:
HIV-1 Tat induces monocyte chemoattractant protein-1-mediated
monocyte transmigration across a model of the human blood-brain
barrier and up-regulates CCR5 expression on human monocytes. J
Immunol. 163:2953–2959. 1999.
|
57
|
Pu H, Tian J, Andras IE, Hayashi K, Flora
G, Hennig B and Toborek M: HIV-1 Tat protein-induced alterations of
ZO-1 expression are mediated by redox-regulated ERK 1/2 activation.
J Cereb Blood Flow Metab. 25:1325–1335. 2005. View Article : Google Scholar : PubMed/NCBI
|
58
|
Mankertz J, Tavalali S, Schmitz H,
Mankertz A, Riecken EO, Fromm M and Schulzke JD: Expression from
the human occludin promoter is affected by tumor necrosis factor
alpha and interferon gamma. J Cell Sci. 113:2085–2090.
2000.PubMed/NCBI
|