1
|
Cogle CR, Craig BM, Rollison DE and List
AF: Incidence of the myelodysplastic syndromes using a novel
claims-based algorithm: high number of uncaptured cases by cancer
registries. Blood. 117:7121–7125. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tefferi A and Vardiman JW: Myelodysplastic
syndromes. N Engl J Med. 361:1872–1885. 2009. View Article : Google Scholar
|
3
|
Komrokji RS, Corrales-Yepez M, Al Ali N,
et al: Validation of the MD Anderson Prognostic Risk Model for
patients with myelodysplastic syndrome. Cancer. 118:2659–2664.
2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sekeres MA, Schoonen WM, Kantarjian H,
List A, Fryzek J, Paquette R and Maciejewski JP: Characteristics of
US patients with myelodysplastic syndromes: results of six
cross-sectional physician surveys. J Natl Cancer Inst.
100:1542–1551. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fukumoto JS and Greenberg PL: Management
of patients with higher risk myelodysplastic syndromes. Crit Rev
Oncol Hematol. 56:179–192. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gore SD and Hermes-DeSantis ER: Enhancing
survival outcomes in the management of patients with higher-risk
myelodysplastic syndromes. Cancer Control. 16(Suppl): 2–10.
2009.PubMed/NCBI
|
7
|
Szmigielska-Kapłon A and Robak T:
Hypomethylating agents in the treatment of myelodysplastic
syndromes and myeloid leukemia. Curr Cancer Drug Targets.
11:837–848. 2011.PubMed/NCBI
|
8
|
Garcia-Manero G: Treatment of higher-risk
myelodysplastic syndrome. Semin Oncol. 38:673–681. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kamal A, Thao L, Sensintaffar J, Zhang L,
Boehm MF, Fritz LC and Burrows FJ: A high-affinity conformation of
Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature.
425:407–410. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yufu Y, Nishimura J and Nawata H: High
constitutive expression of heat shock protein 90 alpha in human
acute leukemia cells. Leuk Res. 16:597–605. 1992. View Article : Google Scholar : PubMed/NCBI
|
11
|
Flandrin P, Guyotat D, Duval A, Cornillon
J, Tavernier E, Nadal N and Campos L: Significance of heat-shock
protein (HSP) 90 expression in acute myeloid leukemia cells. Cell
Stress Chaperones. 13:357–364. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Duval A, Olaru D, Campos L, Flandrin P,
Nadal N and Guyotat D: Expression and prognostic significance of
heat-shock proteins in myelodysplastic syndromes. Haematologica.
91:713–714. 2006.PubMed/NCBI
|
13
|
Flandrin-Gresta P, Solly F, Aanei CM, et
al: Heat Shock Protein 90 is overexpressed in high-risk
myelodysplastic syndromes and associated with higher expression and
activation of Focal Adhesion Kinase. Oncotarget. 3:1158–1168.
2012.PubMed/NCBI
|
14
|
Didelot C, Lanneau D, Brunet M, Joly AL,
De Thonel A, Chiosis G and Garrido C: Anti-cancer therapeutic
approaches based on intracellular and extracellular heat shock
proteins. Curr Med Chem. 14:2839–2847. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kaufmann SH, Karp JE, Litzow MR, et al:
Phase I and pharmacological study of cytarabine and tanespimycin in
relapsed and refractory acute leukemia. Haematologica.
96:1619–1626. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jhaveri K, Taldone T, Modi S and Chiosis
G: Advances in the clinical development of heat shock protein 90
(Hsp90) inhibitors in cancers. Biochim Biophys Acta. 1823:742–755.
2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Taldone T, Gozman A, Maharaj R and Chiosis
G: Targeting Hsp90: small-molecule inhibitors and their clinical
development. Curr Opin Pharmacol. 8:370–374. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lundgren K, Zhang H, Brekken J, et al:
BIIB021, an orally available, fully synthetic small-molecule
inhibitor of the heat shock protein Hsp90. Mol Cancer Ther.
8:921–929. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Dickson MA, Okuno SH, Keohan ML, et al:
Phase II study of the HSP90-inhibitor BIIB021 in gastrointestinal
stromal tumors. Ann Oncol. 24:252–257. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Huang M, Zhang H, Liu T, Tian D, Gu L and
Zhou M: Triptolide inhibits MDM2 and induces apoptosis in acute
lymphoblastic leukemia cells through a P53-independent pathway. Mol
Cancer Ther. 12:184–194. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Nyåkern M, Tazzari PL, Finelli C, et al:
Frequent elevation of Akt kinase phosphorylation in blood marrow
and peripheral blood mononuclear cells from high-risk
myelodysplastic syndrome patients. Leukemia. 20:230–238.
2006.PubMed/NCBI
|
22
|
Yilmaz OH, Valdez R, Theisen BK, Guo W,
Ferquson DO, Wu H and Morrison SJ: Pten dependence distinguishes
haematopoietic stem cells from leukaemia-initiating cells. Nature.
441:475–482. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Guo W, Lasky JL, Chang CJ, et al:
Multi-genetic events collaboratively contribute to Pten-null
leukaemia stem-cell formation. Nature. 453:529–533. 2008.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Breccia M and Alimena G: NF-κB as a
potential therapeutic target in myelodysplastic syndromes and acute
myeloid leukemia. Expert Opin Ther Targets. 14:1157–1176. 2010.
|
25
|
Cilloni D, Martinelli G, Messa F,
Baccarani M and Saglio G: Nuclear factor κB as a target for new
drug development in myeloid malignancies. Haematologica.
92:1224–1229. 2007.
|
26
|
Liu KS, Zhang Y, Ding WC, et al: The
selective Hsp90 inhibitor BJ-B11 exhibits potent antitumor activity
via induction of cell cycle arrest, apoptosis and autophagy in
Eca-109 human esophageal squamous carcinoma cells. Int J Oncol.
41:2276–2284. 2012.PubMed/NCBI
|
27
|
Calderwood SK, Khaleque MA, Sawyer DB and
Ciocca DR: Heat shock proteins in cancer: chaperones of
tumorigenesis. Trends Biochem Sci. 31:164–172. 2006. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mjahed H, Girodon F, Fontenay M and
Garrido C: Heat shock proteins in hematopoietic malignancies. Exp
Cell Res. 318:1946–1958. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Jego G, Hazoumé A, Seigneuric R and
Garrido C: Targeting heat shock proteins in cancer. Cancer Lett.
332:275–285. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Neckers L and Workman P: Hsp90 molecular
chaperone inhibitors: are we there yet? Clin Cancer Res. 18:64–76.
2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chiosis G, Lucas B, Huezo H, Solit D,
Basso A and Rosen N: Development of purine-scaffold small molecule
inhibitors of Hsp90. Curr Cancer Drug Targets. 3:371–376. 2003.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Braun T, Carvalho G, Fabre C, Grosjean J,
Fenaux P and Kroemer G: Targeting NF-kappaB in hematologic
malignacies. Cell Death Differ. 13:748–758. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kerbauy DM, Lesnikov V, Abbasi N, Seal S,
Scott B and Deeq HJ: NF-kappaB and FLIP in arsenic trioxide
(ATO)-induced apoptosis in myelodysplastic syndromes (MDSs). Blood.
106:3917–3925. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chapuis N, Tamburini J, Cornillet-Lefebvre
P, et al: Autocrine IGF-1/IGF-1R signaling is responsible for
constitutive PI3K/Akt activation in acute myeloid leukemia:
therapeutic value of neutralizing anti-IGF-1R antibody.
Haematologica. 95:415–423. 2010. View Article : Google Scholar
|
35
|
He Q, Li X, Zhang Z, et al: Overexpression
of IGF-IR in malignant clonal cells in bone marrow of
myelodysplastic syndromes. Cancer Invest. 28:983–988. 2010.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Mendoza MC, Er EE and Blenis J: The
Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends
Biochem Sci. 36:320–328. 2011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Economopoulou C, Pappa V, Papageorgiou S,
et al: Cell cycle and apoptosis regulatory gene expression in the
bone marrow of patients with de novo myelodysplastic syndromes
(MDS). Ann Hematol. 89:349–358. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Quesnel B, Guillerm G, Vereecque R, et al:
Methylation of the p15(INK4b) gene in myelodysplastic syndromes is
frequent and acquired during disease progression. Blood.
91:2985–2990. 1998.PubMed/NCBI
|
39
|
Chen G, Zeng W, Miyazato A, et al:
Distinctive gene expression profiles of CD34 cells from patients
with myelodysplastic syndrome characterized by specific chromosomal
abnormalities. Blood. 104:4210–4218. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Olnes MJ, Shenoy A, Weinstein B, et al:
Directed therapy for patients with myelodysplastic syndromes (MDS)
by suppression of cyclin D1 with ON 01910. Na Leuk Res. 36:982–989.
2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Böll B, Eltaib F, Reiners KS, et al: Heat
shock protein 90 inhibitor BIIB021 (CNF2024) depletes NF-kappaB and
sensitizes Hodgkin’s lymphoma cells for natural killer
cell-mediated cytotoxicity. Clin Cancer Res. 15:5108–5116.
2009.PubMed/NCBI
|