1
|
Viiri LE, Full LE, Navin TJ, Bequm S,
Didangelos A, Astola N, Berge RK, Seppälä I, Shalhoub J, Frankin
IJ, Perretti M, Lehtimäki T, Davies AH, Wait R and Monaco C: Smooth
muscle cells in human atherosclerosis: proteomic profiling reveals
differences in expression of Annexin A1 and mitochondrial proteins
in carotid disease. J Mol Cell Cardiol. 54:65–72. 2013. View Article : Google Scholar
|
2
|
Savoia C, Burger D, Nishigaki N, Montezano
A and Touyz RM: Angiotensin II and the vascular phenotype in
hypertension. Expert Rev Mol Med. 13:e112011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Liu G, Hitomi H, Hosomi N, Lei B, Pelisch
N, Nakano D, Kiyomoto H, Ma H and Nishiyama A: Mechanical stretch
potentiates angiotensin II-induced proliferation in spontaneously
hypertensive rat vascular smooth muscle cells. Hypertens Res.
33:1250–1257. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kasal DA and Schiffrin EL: Angiotensin II,
aldosterone, and anti-inflammatory lymphocytes: interplay and
therapeutic opportunities. Int J Hypertens.
2012:8297862012.PubMed/NCBI
|
5
|
Touyz RM and Schiffrin EL: Signal
transduction mechanisms mediating the physiological and
pathophysiological actions of angiotensin II in vascular smooth
muscle cells. Pharmacol Rev. 52:639–672. 2000.PubMed/NCBI
|
6
|
Eguchi S, Dempsey PJ, Frank GD, Motley ED
and Inagami T: Activation of MAPKs by angiotensin II in vascular
smooth muscle cells. Metalloprotease-dependent EGF receptor
activation is required for activation of ERK and p38 MAPK but not
for JNK. J Biol Chem. 276:7957–7962. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Shi R, Hu C, Yuan Q, Yang T, Peng J, Li Y,
Bai Y, Cao Z, Cheng G and Zhang G: Involvement of vascular
peroxidase 1 in angiotensin II-induced vascular smooth muscle cell
proliferation. Cardiovasc Res. 91:27–36. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhao Y, Liu J, Li L, Liu L and Wu L: Role
of Ras/PKCzeta/MEK/ERK1/2 signaling pathway in angiotensin
II-induced vascular smooth muscle cell proliferation. Regul Pept.
128:43–50. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bazan JF, Bacon KB, Hardiman G, Wang W,
Soo K, Rossi D, Greaves DR, Zlotnik A and Schall TJ: A new class of
membrane-bound chemokine with a CX3C motif. Nature. 385:640–644.
1997. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Balabanian K, Foussat A, Dorfmüller P,
Durand-Gasselin I, Capel F, Bouchet-Delbos L, Portier A,
Marfaing-Koka A, Krzysiek R, Rimaniol AC, Simonneau G, Emilie D and
Humbert M: CX(3)C chemokine fractalkine in pulmonary arterial
hypertension. Am J Respir Crit Care Med. 165:1419–1425. 2002.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Schäfer A, Schulz C, Fraccarollo D, Tas P,
Leutke M, Eigenthaler M, Seidl S, Heider P, Ertl G, Massberg S and
Bauersachs J: The CX3C chemokine fractalkine induces vascular
dysfunction by generation of superoxide anions. Arterioscler Thromb
Vasc Biol. 27:55–62. 2007.PubMed/NCBI
|
12
|
Xuan W, Liao Y, Chen B, Huang Q, Xu D, Liu
Y, Bin J and Kitakaze M: Detrimental effect of fractalkine on
myocardial ischaemia and heart failure. Cardiovasc Res. 92:385–393.
2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sullivan JC, Pardieck JL, Doran D, Zhang
Y, She JX and Pollock JS: Greater fractalkine expression in
mesenteric arteries of female spontaneously hypertensive rats
compared with males. Am J Physiol Heart Circ Physiol.
296:H1080–H1088. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Perros F, Dorfmüller P, Souza R,
Durand-Gasselin I, Godot V, Capel F, Adnot S, Eddahibi S, Mazmanian
M, Fadel E, Hervé P, Simonneau G, Emilie D and Humbert M:
Fractalkine-induced smooth muscle cell proliferation in pulmonary
hypertension. Eur Respir J. 29:937–943. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chandrasekar B, Mummidi S, Perla RP,
Bysani S, Dulin NO, Liu F and Melby PC: Fractalkine (CX3CL1)
stimulated by nuclear factor kappaB (NF-kappaB)-dependent
inflammatory signals induces aortic smooth muscle cell
proliferation through an autocrine pathway. Biochem J. 373:547–558.
2003. View Article : Google Scholar
|
16
|
Rius C, Piqueras L, González-Navarro H,
Albertos F, Company C, López-Ginés C, Ludwig A, Blanes JI, Morcillo
EJ and Sanz MJ: Arterial and venous endothelia display differential
functional fractalkine (CX3CL1) expression by angiorensin-II.
Arterioscler Thromb Vasc Biol. 33:96–104. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhao L, Wang X, Chang Q, Xu J, Huang Y,
Guo Q, Zhang S, Wang W, Chen X and Wang J: Neferine, a
bisbenzylisoquinline alkaloid attenuates bleomycin-induced
pulmonary fibrosis. Eur J Pharmcol. 627:304–312. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Pan Y, Cai B, Wang K, Wang S, Zhou S, Yu
X, Xu B and Chen L: Neferine enhances insulin sensitivity in
insulin resistant rats. J Ethnopharmacol. 124:98–102. 2009.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Lalitha G, Poornima P, Archanah A and
Padma VV: Protective effect of neferine against
isoproterenol-induced cardiac toxicity. Cardiovasc Toxicol.
13:168–179. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ho HH, Hsu LS, Chan KC, Chen HM, Wu CH and
Wang CJ: Extract from the leaf of nucifera reduced the development
of atherosclerosis via inhibition of vascular smooth muscle cell
proliferation and migration. Food Chem Toxicol. 48:159–168. 2010.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Li XC, Tong GX, Zhang Y, Liu SX, Jin QH,
Chen HH and Chen P: Neferine inhibits angiotensin II-stimulated
proliferation in vascular smooth muscle cells through heme
oxygenase-1. Acta Pharmacol Sin. 31:679–686. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu S, Wang B, Li XZ, Qi LF and Liang YZ:
Preparative separation and purification of liensinine,
isoliensinine and neferine from seed embryo of Nelumbo
nucifera GAERTN using high-speed counter-current
chromatography. J Sep Sci. 32:2476–2481. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ludwig A, Berkhout T, Moores K, Groot P
and Chapman G: Fractalkine is expressed by smooth muscle cells in
response to IFN-gamma and TNF-alpha and is modulated by
metalloproteinase activity. J Immunol. 168:604–612. 2002.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Lucas AD, Bursill C, Guzik TJ, Sadowski J,
Channon KM and Greaves DR: Smooth muscle cells in human
atherosclerotic plaques express the fractalkine receptor CX3CR1 and
undergo chemotaxis to the CX3C chemokine fractalkine (CX3CL1).
Circulation. 108:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ikejima H, Imanishi T, Tsujioka H,
Kashiwagi M, Kuroi A, Tanimoto T, Kitabata H, Ishibashi K, Komukai
K, Takeshita T and Akasaka T: Upregulation of fractalkine and its
receptor, CX3CR1, is associated with coronary plaque rupture in
patients with unstable angina pectoris. Circ J. 74:337–345. 2010.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Flierl U and Schäfer A: Fractalkine - a
local inflammatory marker aggravating platelet activation at the
vulnerable plaque. Thromb Haemost. 108:457–463. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Imai T, Hieshima K, Haskell C, Baba M,
Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ
and Yoshie O: Identification and molecular characterization of
fractalkine receptor CX3CR1, which mediates both leukocyte
migration and adhesion. Cell. 91:521–530. 1997. View Article : Google Scholar : PubMed/NCBI
|
28
|
Damås JK, Boullier A, Waehre T, Smith C,
Sandberg WJ, et al: Expression of fractalkine (CX3CL1) and its
receptor, CX3CR1, is elevated in coronary artery disease and is
reduced during statin therapy. Arterioscler Thromb Vasc Biol.
25:2567–2572. 2005.PubMed/NCBI
|
29
|
Stolla M, Pelisek J, von Brühl ML, Schäfer
A, Barocke V, Heider P, Lorenz M, Tirniceriu A, Steinhart A,
Bauersachs J, Bray PF, Massberg S and Schulz C: Fractalkine is
expressed in early and advanced atherosclerotic lesions and
supports monocyte recruitment via CX3CR1. PLoS One. 7:e435722012.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Combadière C, Potteaux S, Gao JL, Esposito
B, Casanova S, et al: Decreased atherosclerotic lesion formation in
CX3CR1/apolipoprotein E double knockout mice. Circulation.
107:1009–1016. 2003.PubMed/NCBI
|
31
|
Lesnik P, Haskell CA and Charo IF:
Decreased atherosclerosis in CX3CR1−/− mice reveals a role for
fractalkine in atherogenesis. J Clin Invest. 111:333–340. 2003.
|
32
|
Cheng JF, Ni GH, Chen MF, Li YJ, Wang YJ,
Wang CL, Yuan Q, Shi RZ, Hu CP and Yang TL: Involvement of
profilin-1 in angiotensin II-induced vascular smooth muscle cell
proliferation. Vascul Pharmacol. 55:34–41. 2011. View Article : Google Scholar : PubMed/NCBI
|