1
|
Yun Y, Duan WG, Chen P, et al: Ischemic
postconditioning modified renal oxidative stress and lipid
peroxidation caused by ischemic reperfusion injury in rats.
Transplant Proc. 41:3597–3602. 2009. View Article : Google Scholar
|
2
|
Barri YM, Sanchez EQ, Jennings LW, et al:
Acute kidney injury following liver transplantation: definition and
outcome. Liver Transpl. 15:475–483. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Schrier RW, Wang W, Poole B and Mitra A:
Acute renal failure: definitions, diagnosis, pathogenesis, and
therapy. J Clin Invest. 114:5–14. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Nankivell BJ, Borrows RJ, Fung CL, et al:
The natural history of chronic allograft nephropathy. N Engl J Med.
349:2326–2333. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cook HT: The origin of renal fibroblasts
and progression of kidney disease. Am J Pathol. 176:22–24. 2010.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Li R, Chung AC, Dong Y, et al: The
microRNA miR-433 promotes renal fibrosis by amplifying the
TGF-β/Smad3-Azin1 pathway. Kidney Int. 84:1129–1244.
2013.PubMed/NCBI
|
7
|
Ni H, Chen J, Pan M, et al: FTY720
prevents progression of renal fibrosis by inhibiting renal
microvasculature endothelial dysfunction in a rat model of chronic
kidney disease. J Mol Histol. 44:693–703. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zeisberg M, Maeshima Y, Mosterman B and
Kalluri R: Renal fibrosis. Extracellular matrix microenvironment
regulates migratory behavior of activated tubular epithelial cells.
Am J Pathol. 160:2001–2008. 2002.
|
9
|
Zhang X, Yang J, Li Y and Liu Y: Both Sp1
and Smad participate in mediating TGF-beta1-induced HGF receptor
expression in renal epithelial cells. Am J Physiol Renal Physiol.
288:F16–F26. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Nakao A, Afrakhte M, Morén A, et al:
Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta
signalling. Nature. 389:631–635. 1997. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Ren ZP, Sun LP, Xia YC and Tong QX: Effect
of the protease inhibitor MG132 on the transforming growth
factor-β/Smad signaling pathway in HSC-T6 cells. J Huazhong Univ
Sci Technolog Med Sci. 33:501–504. 2013.
|
12
|
Ajamieh HH, Menendez S, Martinez-Sanchez
G, et al: Effects of ozone oxidative preconditioning on nitric
oxide generation and cellular redox balance in a rat model of
hepatic ischaemia-reperfusion. Liver Int. 24:55–62. 2004.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Ajamieh HH, Berlanga J, Merino N, et al:
Role of protein synthesis in the protection conferred by
ozone-oxidative-preconditioning in hepatic ischaemia/reperfusion.
Transpl Int. 18:604–612. 2005. View Article : Google Scholar
|
14
|
Chen H, Xing B, Liu X, et al: Ozone
oxidative preconditioning inhibits inflammation and apoptosis in a
rat model of renal ischemia/reperfusion injury. Eur J Pharmacol.
581:306–314. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Martinez-Sanchez G, Al-Dalain SM, Menendez
S, et al: Therapeutic efficacy of ozone in patients with diabetic
foot. Eur J Pharmacol. 523:151–161. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
León Fernández OS, Pantoja M, Díaz Soto
MT, et al: Ozone oxidative post-conditioning reduces oxidative
protein damage in patients with disc hernia. Neurol Res. 34:59–67.
2012.PubMed/NCBI
|
17
|
Leon OS, Menendez S, Merino N, et al:
Ozone oxidative preconditioning: a protection against cellular
damage by free radicals. Mediators Inflamm. 7:289–294. 1998.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Feitoza CQ, Goncalves GM, Semedo P, et al:
Inhibition of COX 1 and 2 prior to renal ischemia/reperfusion
injury decreases the development of fibrosis. Mol Med. 14:724–730.
2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Weng X, Shen H, Kuang Y, et al: Ischemic
postconditioning inhibits the renal fibrosis induced by
ischemia-reperfusion injury in rats. Urology. 80:481–484. 2012.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu Y: Renal fibrosis: new insights into
the pathogenesis and therapeutics. Kidney Int. 69:213–217. 2006.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Border WA and Noble NA: TGF-beta in kidney
fibrosis: a target for gene therapy. Kidney Int. 51:1388–1396.
1997. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kellenberger T, Krag S, Danielsen CC, et
al: Differential effects of Smad3 targeting in a murine model of
chronic kidney disease. Physiol Rep Dec. 1:e001812013.PubMed/NCBI
|
23
|
Wang Y1, Zhang Z, Shen H, Lu Y, Li H, Ren
X and Wu G: TGF-beta1/Smad7 signaling stimulates renal
tubulointerstitial fibrosis induced by AAI. J Recept Signal
Transduct Res. 28:413–428. 2008. View Article : Google Scholar : PubMed/NCBI
|