1
|
Lakhan SE, Kirchgessner A and Hofer M:
Inflammatory mechanisms in ischemic stroke: therapeutic approaches.
J Transl Med. 7:972009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Oozawa S, Mori S, Kanke T, Takahashi H,
Liu K, Tomono Y, Asanuma M, Miyazaki I, Nishibori M and Sano S:
Effects of HMGB1 on ischemia-reperfusion injury in the rat heart.
Circ J. 72:1178–1184. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Andrassy M, Volz HC, Riedle N, Gitsioudis
G, Seidel C, Laohachewin D, Zankl AR, Kaya Z, Bierhaus A,
Giannitsis E, et al: HMGB1 as a predictor of infarct transmurality
and functional recovery in patients with myocardial infarction. J
Intern Med. 270:245–253. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Yao HC, Zhao AP, Han QF, Wu L, Yao DK and
Wang LX: Correlation between serum high-mobility group box-1 levels
and high-sensitivity C-reactive protein and troponin I in patients
with coronary artery disease. Exp Ther Med. 6:121–124.
2013.PubMed/NCBI
|
5
|
Wang CY, Liu PY and Liao JK: Pleiotropic
effects of statin therapy: molecular mechanisms and clinical
results. Trends Mol Med. 14:37–44. 2008. View Article : Google Scholar
|
6
|
Ke D, Fang J, Fan L, Chen Z and Chen L:
Regulatory T cells contribute to rosuvastatin-induced
cardioprotection against ischemia-reperfusion injury. Coron Artery
Dis. 24:334–341. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yao HC, Han QF, Wang LH, Wu L, Liu T, Fu
ZL, Tian KL and Zhang M: Simvastatin attenuates myocardial injury
by inhibiting the expression of high mobility group box 1 in
myocardium of rats following acute myocardial infarction. Exp Clin
Cardiol. 20:2342. 2014.
|
8
|
Eltzschig HK and Eckle T: Ischemia and
reperfusion - from mechanism to translation. Nat Med. 17:1391–1401.
2011. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Fan Q, Yang XC, Liu Y, Wang LF, Liu SH, Ge
YG, Chen ML, Wang W, Zhang LK, Irwin MG and Xia Z: Postconditioning
attenuates myocardial injury by reducing nitro-oxidative stress in
vivo in rats and in humans. Clin Sci (Lond). 120:251–261. 2011.
|
10
|
Jiang XJ, Ai CY, Shi EY, Nakajima Y and Ma
H: Neuroprotection against spinal cord ischemia-reperfusion injury
induced by different ischemic postconditioning methods: Roles of
phosphatidylinositol 3-kinase-Akt and extracellular
signal-regulated kinase. Anesthesiology. 111:1197–1205. 2009.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Kong Y, Rogers MR and Qin X: Effective
neuroprotection by ischemic postconditioning is associated with a
decreased expression of RGMa and inflammation mediators in ischemic
rats. Neurochem Res. 38:815–825. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen H, Xing B, Liu X, Zhan B, Zhou J, Zhu
H and Chen Z: Ischemic postconditioning inhibits apoptosis after
renal ischemia/reperfusion injury in rat. Transpl Int. 21:364–371.
2008. View Article : Google Scholar
|
13
|
Knudsen AR, Kannerup AS, Dich R,
Funch-Jensen P, Grønbaek H, Kruhøffer M and Mortensen FV: Ischemic
pre- and postconditioning has pronounced effects on gene expression
profiles in the rat liver after ischemia/reperfusion. Am J Physiol
Gastrointest Liver Physiol. 303:G482–G489. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liang H, Yu F, Tong Z, Yuan B and Wang C:
Effect of ischemia postconditioning on skeletal muscle oxidative
injury, mTOR, Bax, Bcl-2 proteins expression, and HIF-1α/β-actin
mRNA, IL-6/β-actin mRNA and caveolin-3/β-actin mRNA expression in
ischemia-reperfusion rabbits. Mol Biol Rep. 40:507–514. 2013.
View Article : Google Scholar
|
15
|
Cao QF, Qu MJ, Yang WQ, Wang DP, Zhang MH
and Di SB: Ischemia postconditioning preventing lung
ischemia-reperfusion injury. Gene. 554:120–124. 2015. View Article : Google Scholar
|
16
|
Leng YF, Zhang Y, Zhang Y, Xue X, Wang T
and Kang YQ: Ischemic post-conditioning attenuates the intestinal
injury induced by limb ischemia/reperfusion in rats. Braz J Med
Biol Res. 44:411–417. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhao ZQ: Postconditioning in reperfusion
injury: A status report. Cardiovasc Drugs Ther. 24:265–279. 2010.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yao HC, Liu T, Meng XY, Han QF, Zhang M
and Wang LX: Effect of basic fibroblast growth factor on the
myocardial expression of hypoxia-inducible factor-1α and vascular
endothelial growth factor following acute myocardial infarction.
Heart Lung Circ. 22:946–951. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Braunwald E and Kloner RA: Myocardial
reperfusion: a double-edged sword? J Clin Invest. 76:1713–1719.
1985. View Article : Google Scholar : PubMed/NCBI
|
20
|
Skyschally A, Gres P, Hoffmann S, Haude M,
Erbel R, Schulz R and Heusch G: Bidirectional role of tumor
necrosis factor-alpha in coronary microembolization: progressive
contractile dysfunction versus delayed protection against
infarction. Circ Res. 100:140–146. 2007. View Article : Google Scholar
|
21
|
Bonaldi T, Talamo F, Scaffidi P, Ferrera
D, Porto A, Bachi A, Rubartelli A, Agresti A and Bianchi ME:
Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect
it towards secretion. EMBO J. 22:5551–5560. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ren D, Sun R and Wang S: Role of inducible
nitric oxide synthase expressed by alveolar macrophages in high
mobility group box 1-induced acute lung injury. Inflamm Res.
55:207–215. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Prasad A, Stone GW, Holmes DR and Gersh B:
Reperfusion injury, microvascular dysfunction, and
cardioprotection: the ‘dark side’ of reperfusion. Circulation.
120:2105–2112. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kitano K, Usui S, Ootsuji H, Takashima S,
Kobayashi D, Murai H, Furusho H, Nomura A, Kaneko S and Takamura M:
Rho-kinase activation in leukocytes plays a pivotal role in
myocardial ischemia/reperfusion injury. PLoS One. 9:e922422014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Tsung A, Klune JR, Zhang X, Jeyabalan G,
Cao Z, Peng X, Stolz DB, Geller DA, Rosengart MR and Billiar TR:
HMGB1 release induced by liver ischemia involves Toll-like receptor
4 dependent reactive oxygen species production and calcium-mediated
signaling. J Exp Med. 204:2913–2923. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hu X, Zhou X, He B, Xu C, Wu L, Cui B, Wen
H, Lu Z and Jiang H: Minocycline protects against myocardial
ischemia and reperfusion injury by inhibiting high mobility group
box 1 protein in rats. Eur J Pharmacol. 638:84–89. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Du X, Hu X and Wei J: Postconditioning
with rosuvastatin reduces myocardial ischemia-reperfusion injury by
inhibiting high mobility group box 1 protein expression. Exp Ther
Med. 7:117–120. 2014.
|
28
|
Ding HS, Yang J, Chen P, Yang J, Bo SQ,
Ding JW and Yu QQ: The HMGB1-TLR4 axis contributes to myocardial
ischemia/reperfusion injury via regulation of cardiomyocyte
apoptosis. Gene. 527:389–393. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Li XD, Yang YJ, Geng YJ, et al: The
cardioprotection of simvastatin in reperfused swine hearts relates
to the inhibition of myocardial edema by modulating aquaporins via
the PKA pathway. Int J Cardiol. 167:2657–2666. 2013. View Article : Google Scholar
|