1
|
López-Otín C, Blasco MA, Partridge L,
Serrano M and Kroemer G: The hallmarks of aging. Cell.
153:1194–1217. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Weindruch R, Walford RL, Fligiel S and
Guthrie D: The retardation of aging in mice by dietary restriction:
longevity, cancer, immunity and lifetime energy intake. J Nutr.
116:641–654. 1986.PubMed/NCBI
|
3
|
Mair W and Dillin A: Aging and survival:
the genetics of life span extension by dietary restriction. Annu
Rev Biochem. 77:727–754. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Howitz KT, Bitterman KJ, Cohen HY, et al:
Small molecule activators of sirtuins extend Saccharomyces
cerevisiae lifespan. Nature. 425:191–196. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Valenzano DR, Terzibasi E, Genade T,
Cattaneo A, Domenici L and Cellerino A: Resveratrol prolongs
lifespan and retards the onset of age-related markers in a
short-lived vertebrate. Curr Biol. 16:296–300. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Baur JA, Pearson KJ, Price NL, et al:
Resveratrol improves health and survival of mice on a high-calorie
diet. Nature. 444:337–342. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
McCarty MF: Chronic activation of
AMP-activated kinase as a strategy for slowing aging. Med
Hypotheses. 63:334–339. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yu BC, Yang MC, Lee KH, Kim KH, Choi SU
and Lee KR: Two new phenolic constituents of Humulus japonicus and
their cytotoxicity test in vitro. Arch Pharm Res. 30:1471–1475.
2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hong M, Son E, Lee S, et al:
Anti-mycobacterial effects of the extract of Humulus japonicus.
Han'guk Sikp'um Kwahakhoe chi. 46:94–99. 2014.[(In Korean)].
|
10
|
Park SW, Woo CJ, Chung SK and Chung KT:
Antimicrobial and antioxidative activities of solvent fraction from
Humulus japonicus. Han'guk Sikp'um Kwahakhoe chi. 26:464–470.
1994.[(In Korean)].
|
11
|
Park SW, Kim SH and Chung SK:
Antimutagenic effects and isolation of flavonoids from Humulus
japonicus extract. Han'guk Sikp'um Kwahakhoe chi. 27:897–901.
1995.[(In Korean)].
|
12
|
Park SW, Chung SK and Park JC: Active
oxygen scavenging activity of luteolin-7-O-b-D-glucoside isolated
from Humulus japonicus. Han'guk Sikp'um Yŏngyang Kwahakhoe chi.
29:106–110. 2000.[(In Korean)].
|
13
|
Lee YR, Kim K, Lee SH, Kim MY, Park HJ and
Jeong HS: Antioxidant and antitumor activities of methanolic
extracts from Humulus japonicus. Han'guk Sikp'um Yŏngyang Hakhoe
chi. 25:357–361. 2012.[(In Korean)].
|
14
|
Hwang S, Jung H, Jang W, Jo M, Kim S and
Jee S: Anti-inflammatory effects of the MeOH extract of Humulus
japonicus in vitro. Han'bang An IIbi Inhu P'ibu Kwahakhoe chi.
22:71–91. 2009.[(In Korean)].
|
15
|
Aritomi M: Studies on the chemical
constituents in leaves of Humulus japonicus Siebold et Zuccarini.
Yakugaku Zasshi. 82:1331–1332. 1962.[(In Japanese)].
|
16
|
Naya Y and Kotake M: The constituents of
Hops. V. The volatile composition of Humulus japonicus Sieb. et
Zucc. Bull Chem Soc Jpn. 43:3594–3596. 1970. View Article : Google Scholar
|
17
|
Brachmann CB, Davies A, Cost GJ, et al:
Designer deletion strains derived from Saccharomyces cerevisiae
S288C: a useful set of strains and plasmids for PCR-mediated gene
disruption and other applications. Yeast. 14:115–132. 1998.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Sherman F: Getting started with yeast.
Methods Enzymol. 350:3–41. 2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
Alvers AL, Fishwick LK, Wood MS, et al:
Autophagy and amino acid homeostasis are required for chronological
longevity in Saccharomyces cerevisiae. Aging Cell. 8:353–369. 2009.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Lu JM, Lin PH, Yao Q and Chen C: Chemical
and molecular mechanisms of antioxidants: experimental approaches
and model systems. J Cell Mol Med. 14:840–860. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang Y, Liang Y and Vanhoutte PM: SIRT1
and AMPK in regulating mammalian senescence: a critical review and
a working model. FEBS Lett. 585:986–994. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kitada M, Kume S, Takeda-Watanabe A, Tsuda
S, Kanasaki K and Koya D: Calorie restriction in overweight males
ameliorates obesity-related metabolic alterations and cellular
adaptations through anti-aging effects, possibly including AMPK and
SIRT1 activation. Biochim Biophys Acta. 1830:4820–4827. 2013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Salminen A and Kaarniranta K:
AMP-activated protein kinase (AMPK) controls the aging process via
an integrated signaling network. Ageing Res Rev. 11:230–241. 2012.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Hardie DG, Ross FA and Hawley SA: AMPK: a
nutrient and energy sensor that maintains energy homeostasis. Nat
Rev Mol Cell Biol. 13:251–262. 2012. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Reznick RM, Zong H, Li J, et al:
Aging-associated reductions in AMP-activated protein kinase
activity and mitochondrial biogenesis. Cell Metab. 5:151–156. 2007.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Stenesen D, Suh JM, Seo J, et al:
Adenosine nucleotide biosynthesis and AMPK regulate adult life span
and mediate the longevity benefit of caloric restriction in flies.
Cell Metab. 17:101–112. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Tanno M, Kuno A, Yano T, et al: Induction
of manganese superoxide dismutase by nuclear translocation and
activation of SIRT1 promotes cell survival in chronic heart
failure. J Biol Chem. 285:8375–8382. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tong C, Morrison A, Mattison S, et al:
Impaired SIRT1 nucleocytoplasmic shuttling in the senescent heart
during ischemic stress. FASEB J. 27:4332–4342. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Chainiaux F, Magalhaes JP, Eliaers F,
Remacle J and Toussaint O: UVB-induced premature senescence of
human diploid skin fibroblasts. Int J Biochem Cell Biol.
34:1331–1339. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chung KW, Choi YJ, Park MH, et al:
Molecular insights into SIRT1 protection against UVB-induced skin
fibroblast senescence by suppression of oxidative stress and p53
acetylation. J Gerontol A Biol Sci Med Sci. Aug 27–2014.(Epub ahead
of print). View Article : Google Scholar : PubMed/NCBI
|
31
|
Yoo HG, Lee BH, Kim W, et al: Lithospermum
erythrorhizon extract protects keratinocytes and fibroblasts
against oxidative stress. J Med Food. 17:1189–1196. 2014.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Hwang E, Lee TH, Park SY, Yi TH and Kim
SY: Enzyme-modified Panax ginseng inhibits UVB-induced skin aging
through the regulation of procollagen type I and MMP-1 expression.
Food Funct. 5:265–274. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kampkötter A, Pielarski T, Rohrig R, et
al: The Ginkgo biloba extract EGb761 reduces stress sensitivity,
ROS accumulation and expression of catalase and glutathione
S-transferase 4 in Caenorhabditis elegans. Pharmacol Res.
55:139–147. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Gospodaryov DV, Yurkevych IS, Jafari M,
Lushchak VI and Lushchak OV: Lifespan extension and delay of
age-related functional decline caused by Rhodiola rosea depends on
dietary macronutrient balance. Longev Healthspan. 2:52013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Burkewitz K, Zhang Y and Mair WB: AMPK at
the nexus of energetics and aging. Cell Metab. 20:10–25. 2014.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Apfeld J, OConnor G, McDonagh T, DiStefano
PS and Curtis R: The AMP-activated protein kinase AAK-2 links
energy levels and insulin-like signals to lifespan in C. Elegans.
Genes Dev. 18:3004–3009. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Greer EL, Dowlatshahi D, Banko MR, et al:
An AMPK-FOXO pathway mediates longevity induced by a novel method
of dietary restriction in C. Elegans. Curr Biol. 17:1646–1656.
2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Greer EL, Oskoui PR, Banko MR, et al: The
energy sensor AMP-activated protein kinase directly regulates the
mammalian FOXO3 transcription factor. J Biol Chem. 282:30107–30119.
2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Schlernitzauer A, Oiry C, Hamad R, et al:
Chicoric acid is an antioxidant molecule that stimulates AMP kinase
pathway in L6 myotubes and extends lifespan in Caenorhabditis
elegans. PLoS One. 8:e787882013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Onken B and Driscoll M: Metformin induces
a dietary restriction-like state and the oxidative stress response
to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PLoS
One. 5:e87582010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yin Y, Li W, Son YO, et al: Quercitrin
protects skin from UVB-induced oxidative damage. Toxicol Appl
Pharmacol. 269:89–99. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Eid HM, Martineau LC, Saleem A, et al:
Stimulation of AMP-activated protein kinase and enhancement of
basal glucose uptake in muscle cells by quercetin and quercetin
glycosides, active principles of the antidiabetic medicinal plant
Vaccinium vitis-idaea. Mol Nutr Food Res. 54:991–1003. 2010.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Liu JF, Ma Y, Wang Y, Du ZY, Shen JK and
Peng HL: Reduction of lipid accumulation in HepG2 cells by luteolin
is associated with activation of AMPK and mitigation of oxidative
stress. Phytother Res. 25:588–596. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Cohen HY, Miller C, Bitterman KJ, et al:
Calorie restriction promotes mammalian cell survival by inducing
the SIRT1 deacetylase. Science. 305:390–392. 2004. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bordone L, Cohen D, Robinson A, et al:
SIRT1 transgenic mice show phenotypes resembling calorie
restriction. Aging Cell. 6:759–767. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Finkel T and Holbrook NJ: Oxidants,
oxidative stress and the biology of ageing. Nature. 408:239–247.
2000. View Article : Google Scholar : PubMed/NCBI
|
47
|
Lam YY, Peterson CM and Ravussin E:
Resveratrol vs. calorie restriction: data from rodents to humans.
Exp Gerontol. 48:1018–1024. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Amić D, Davidović-Amić D, Beslo D, Rastija
V, Lucić B and Trinajstić N: SAR and QSAR of the antioxidant
activity of flavonoids. Curr Med Chem. 14:827–845. 2007. View Article : Google Scholar : PubMed/NCBI
|
49
|
Cheng SC, Li WH, Shi YC, et al:
Antioxidant activity and delayed aging effects of hot water extract
from Chamaecyparis obtusa var. formosana leaves. J Agric Food Chem.
62:4159–4165. 2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Heim KE, Tagliaferro AR and Bobilya DJ:
Flavonoid antioxidants: chemistry, metabolism and
structure-activity relationships. J Nutr Biochem. 13:572–584. 2002.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Comalada M, Camuesco D, Sierra S, et al:
In vivo quercitrin anti-inflammatory effect involves release of
quercetin, which inhibits inflammation through down-regulation of
the NF-kappaB pathway. Eur J Immunol. 35:584–592. 2005. View Article : Google Scholar : PubMed/NCBI
|
52
|
Jiang S, Yang J, Qian D, et al: Rapid
screening and identification of metabolites of quercitrin produced
by the human intestinal bacteria using ultra performance liquid
chromatography/quadrupole-time-of-flight mass spectrometry. Arch
Pharm Res. 37:204–213. 2014. View Article : Google Scholar : PubMed/NCBI
|