1
|
Roberts JM and Hubel CA: The two stage
model of preeclampsia: variations on the theme. Placenta. 30(Suppl
A): S32–S37. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Raymond D and Peterson E: A critical
review of early-onset and late-onset preeclampsia. Obstet Gynecol
Surv. 66:497–506. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Redman CW: Platelets and the beginnings of
preeclampsia. N Engl J Med. 323:478–480. 1990. View Article : Google Scholar : PubMed/NCBI
|
4
|
Carty DM, Delles C and Dominiczak AF:
Novel biomarkers for predicting preeclampsia. Trends Cardiovasc
Med. 18:186–194. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gauster M, Moser G, Orendi K and Huppertz
B: Factors involved in regulating trophoblast fusion: potential
role in the development of preeclampsia. Placenta. 30(Suppl A):
S49–S54. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Goldman-Wohl D and Yagel S: Regulation of
trophoblast invasion: from normal implantation to pre-eclampsia.
Mol Cell Endocrinol. 187:233–238. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kim YN, Lee DS, Jeong DH, et al: The
relationship of the level of circulating antiangiogenic factors to
the clinical manifestations of preeclampsia. Prenat Diagn.
29:464–470. 2009. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Steinberg G, Khankin EV and Karumanchi SA:
Angiogenic factors and preeclampsia. Thromb Res. 123(Suppl 2):
S93–S99. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Cerdeira AS and Karumanchi SA: Angiogenic
factors in preeclampsia and related disorders. Cold Spring Harb
Perspect Med. 2(pii): a0065852012.PubMed/NCBI
|
10
|
Hirashima C, Ohkuchi A, Matsubara S, et
al: Alteration of serum soluble endoglin levels after the onset of
preeclampsia is more pronounced in women with early-onset.
Hypertens Res. 31:1541–1548. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zlotnik A and Yoshie O: Chemokines: a new
classification system and their role in immunity. Immunity.
12:121–127. 2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Keeley EC, Mehrad B and Strieter RM:
Chemokines as mediators of neovascularization. Arterioscler Thromb
Vasc Biol. 28:1928–1936. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Addison CL, Daniel TO, Burdick MD, et al:
The CXC chemokine receptor 2, CXCR2, is the putative receptor for
ELR+ CXC chemokine-induced angiogenic activity. J
Immunol. 165:5269–5277. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Strieter RM, Polverini PJ, Kunkel SL, et
al: The functional role of the ELR motif in CXC chemokine-mediated
angiogenesis. J Biol Chem. 270:27348–27357. 1995. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mehrad B, Keane MP and Strieter RM:
Chemokines as mediators of angiogenesis. Thromb Haemost.
97:755–762. 2007.PubMed/NCBI
|
16
|
Maione TE, Gray GS, Petro J, et al:
Inhibition of angiogenesis by recombinant human platelet factor-4
and related peptides. Science. 247:77–79. 1990. View Article : Google Scholar : PubMed/NCBI
|
17
|
Keeley EC, Mehrad B and Strieter RM:
Chemokines as mediators of tumor angiogenesis and
neovascularization. Exp Cell Res. 317:685–690. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Loukinova E, Dong G, Enamorado-Ayalya I,
et al: Growth regulated oncogene-alpha expression by murine
squamous cell carcinoma promotes tumor growth, metastasis,
leukocyte infiltration and angiogenesis by a host CXC receptor-2
dependent mechanism. Oncogene. 19:3477–3486. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Murphy PM: The molecular biology of
leukocyte chemoattractant receptors. Annu Rev Immunol. 12:593–633.
1994. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ahuja SK and Murphy PM: The CXC chemokines
growth-regulated oncogene (GRO) alpha, GRObeta, GROgamma,
neutrophil-activating peptide-2, and epithelial cell-derived
neutrophil-activating peptide-78 are potent agonists for the type
B, but not the type A, human interleukin-8 receptor. J Biol Chem.
271:20545–20550. 1996. View Article : Google Scholar : PubMed/NCBI
|
21
|
Loetscher M, Gerber B, Loetscher P, et al:
Chemokine receptor specific for IP10 and mig: structure, function,
and expression in activated T-lymphocytes. J Exp Med. 184:963–969.
1996. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kakinuma T and Hwang ST: Chemokines,
chemokine receptors, and cancer metastasis. J Leukoc Biol.
79:639–651. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tanegashima K, Suzuki K, Nakayama Y, et
al: CXCL14 is a natural inhibitor of the CXCL12-CXCR4 signaling
axis. FEBS Lett. 587:1731–1735. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Balabanian K, Lagane B, Infantino S, et
al: The chemokine SDF-1/CXCL12 binds to and signals through the
orphan receptor RDC1 in T lymphocytes. J Biol Chem.
280:35760–35766. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Strieter RM, Burdick MD, Mestas J, et al:
Cancer CXC chemokine networks and tumour angiogenesis. Eur J
Cancer. 42:768–778. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yoneda J, Kuniyasu H, Crispens MA, et al:
Expression of angiogenesis-related genes and progression of human
ovarian carcinomas in nude mice. J Natl Cancer Inst. 90:447–454.
1998. View Article : Google Scholar : PubMed/NCBI
|
27
|
Arenberg DA, Keane MP, DiGiovine B, et al:
Epithelial-neutrophil activating peptide (ENA-78) is an important
angiogenic factor in non-small cell lung cancer. J Clin Invest.
102:465–472. 1998. View
Article : Google Scholar : PubMed/NCBI
|
28
|
Addison CL, Belperio JA, Burdick MD and
Strieter RM: Overexpression of the duffy antigen receptor for
chemokines (DARC) by NSCLC tumor cells results in increased tumor
necrosis. BMC Cancer. 4:282004. View Article : Google Scholar : PubMed/NCBI
|
29
|
White ES, Flaherty KR, Carskadon S, et al:
Macrophage migration inhibitory factor and CXC chemokine expression
in non-small cell lung cancer: role in angiogenesis and prognosis.
Clin Cancer Res. 9:853–860. 2003.PubMed/NCBI
|
30
|
Arenberg DA, Kunkel SL, Polverini PJ, et
al: Inhibition of interleukin-8 reduces tumorigenesis of human
non-small cell lung cancer in SCID mice. J Clin Invest.
97:2792–2802. 1996. View Article : Google Scholar : PubMed/NCBI
|
31
|
Moore BB, Arenberg DA, Stoy K, et al:
Distinct CXC chemokines mediate tumorigenicity of prostate cancer
cells. Am J Pathol. 154:1503–1512. 1999. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wente MN, Keane MP, Burdick MD, et al:
Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer
cell-induced angiogenesis. Cancer Lett. 241:221–227. 2006.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Moser B and Loetscher P: Lymphocyte
traffic control by chemokines. Nat Immunol. 2:123–128. 2001.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Lasagni L, Francalanci M, Annunziato F, et
al: An alternatively spliced variant of CXCR3 mediates the
inhibition of endothelial cell growth induced by IP-10, Mig, and
I-TAC, and acts as functional receptor for platelet factor 4. J Exp
Med. 197:1537–1549. 2003. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ehlert JE, Addison CA, Burdick MD, et al:
Identification and partial characterization of a variant of human
CXCR3 generated by posttranscriptional exon skipping. J Immunol.
173:6234–6240. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yang J and Richmond A: The angiostatic
activity of interferon-inducible protein-10/CXCL10 in human
melanoma depends on binding to CXCR3 but not to glycosaminoglycan.
Mol Ther. 9:846–855. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Strieter RM, Burdick MD, Gomperts BN, et
al: CXC chemokines in angiogenesis. Cytokine Growth Factor Rev.
16:593–609. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cole KE, Strick CA, Paradis TJ, et al:
Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel
non-ELR CXC chemokine with potent activity on activated T cells
through selective high affinity binding to CXCR3. J Exp Med.
187:2009–2021. 1998. View Article : Google Scholar : PubMed/NCBI
|
39
|
Coughlin CM, Salhany KE, Wysocka M, et al:
Interleukin-12 and interleukin-18 synergistically induce murine
tumor regression which involves inhibition of angiogenesis. J Clin
Invest. 101:1441–1452. 1998. View
Article : Google Scholar : PubMed/NCBI
|
40
|
Borgström P, Discipio R and Maione TE:
Recombinant platelet factor 4, an angiogenic marker for human
breast carcinoma. Anticancer Res. 18:4035–4041. 1998.PubMed/NCBI
|
41
|
Gupta SK and Singh JP: Inhibition of
endothelial cell proliferation by platelet factor-4 involves a
unique action on S phase progression. J Cell Biol. 127:1121–1127.
1994. View Article : Google Scholar : PubMed/NCBI
|
42
|
Sgadari C, Angiolillo AL, Cherney BW, et
al: Interferon-inducible protein-10 identified as a mediator of
tumor necrosis in vivo. In: Proc Natl Acad Sci USA. 93. pp.
13791–13796. 1996; View Article : Google Scholar : PubMed/NCBI
|
43
|
Arenberg DA, Kunkel SL, Polverini PJ, et
al: Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic
factor that inhibits human non-small cell lung cancer (NSCLC)
tumorigenesis and spontaneous metastases. J Exp Med. 184:981–992.
1996. View Article : Google Scholar : PubMed/NCBI
|
44
|
Arenberg DA, White ES, Burdick MD, et al:
Improved survival in tumor-bearing SCID mice treated with
interferon-gamma-inducible protein 10 (IP-10/CXCL10). Cancer
Immunol Immunother. 50:533–538. 2001. View Article : Google Scholar : PubMed/NCBI
|
45
|
Balkwill F: Cancer and the chemokine
network. Nat Rev Cancer. 4:540–550. 2004. View Article : Google Scholar : PubMed/NCBI
|
46
|
Müller A, Homey B, Soto H, et al:
Involvement of chemokine receptors in breast cancer metastasis.
Nature. 410:50–56. 2001. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zagzag D, Lukyanov Y, Lan L, et al:
Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in
glioblastoma: implications for angiogenesis and glioma cell
invasion. Lab Invest. 86:1221–1232. 2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sun X, Cheng G, Hao M, et al: CXCL12 /
CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer
Metastasis Rev. 29:709–722. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Burns JM, Summers BC, Wang Y, et al: A
novel chemokine receptor for SDF-1 and I-TAC involved in cell
survival, cell adhesion, and tumor development. J Exp Med.
203:2201–2213. 2006. View Article : Google Scholar : PubMed/NCBI
|
50
|
Maishi N, Ohga N, Hida Y, et al: CXCR7: a
novel tumor endothelial marker in renal cell carcinoma. Pathol Int.
62:309–317. 2012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Song EY, Shurin MR, Tourkova IL, et al:
Epigenetic mechanisms of promigratory chemokine CXCL14 regulation
in human prostate cancer cells. Cancer Res. 70:4394–4401. 2010.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Tessema M, Klinge DM, Yingling CM, et al:
Re-expression of CXCL14, a common target for epigenetic silencing
in lung cancer, induces tumor necrosis. Oncogene. 29:5159–5170.
2010. View Article : Google Scholar : PubMed/NCBI
|
53
|
Jovanović M, Stefanoska I, Radojcić L and
Vićovac L: Interleukin-8 (CXCL8) stimulates trophoblast cell
migration and invasion by increasing levels of matrix
metalloproteinase (MMP)2 and MMP9 and integrins alpha5 and beta1.
Reproduction. 139:789–798. 2010. View Article : Google Scholar : PubMed/NCBI
|
54
|
Kuang H, Chen Q, Zhang Y, et al: The
cytokine gene CXCL14 restricts human trophoblast cell invasion by
suppressing gelatinase activity. Endocrinology. 150:5596–5605.
2009. View Article : Google Scholar : PubMed/NCBI
|
55
|
Kuang H, Chen Q, Fan X, et al: CXCL14
inhibits trophoblast outgrowth via a paracrine/autocrine manner
during early pregnancy in mice. J Cell Physiol. 221:448–457. 2009.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Li MQ, Tang CL, Du MR, et al: CXCL12
controls over-invasion of trophoblasts via upregulating CD82
expression in DSCs at maternal-fetal interface of human early
pregnancy in a paracrine manner. Int J Clin Exp Pathol. 4:276–286.
2011.PubMed/NCBI
|
57
|
Gotsch F, Romero R, Friel L, et al:
CXCL10/IP-10: a missing link between inflammation and
anti-angiogenesis in preeclampsia? J Matern Fetal Neonatal Med.
20:777–792. 2007. View Article : Google Scholar : PubMed/NCBI
|
58
|
Boij R, Svensson J, Nilsson-Ekdahl K, et
al: Biomarkers of coagulation, inflammation, and angiogenesis are
independently associated with preeclampsia. Am J Reprod Immunol.
68:258–270. 2012. View Article : Google Scholar : PubMed/NCBI
|
59
|
Schanz A, Winn VD, Fisher SJ, et al:
Pre-eclampsia is associated with elevated CXCL12 levels in
placental syncytiotrophoblasts and maternal blood. Eur J Obstet
Gynecol Reprod Biol. 157:32–37. 2011. View Article : Google Scholar : PubMed/NCBI
|
60
|
Gui S, Ni S, Jia J, Gong Y, Gao L, Zhang L
and Zhou R: Inconformity of CXCL3 plasma level and placenta
expression in preeclampsia and its effect on trophoblast viability
and invasion. PLoS One. 9:e1144082014. View Article : Google Scholar : PubMed/NCBI
|