1
|
Nangaku M: Mechanisms of
tubulointerstitial injury in the kidney: final common pathways to
end-stage renal failure. Intern Med. 43:9–17. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Campanholle G, Ligresti G, Gharib SA and
Duffield JS: Cellular mechanisms of tissue fibrosis 3. Novel
mechanisms of kidney fibrosis. Am J Physiol Cell Physiol.
304:C591–C603. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Eddy AA: Molecular basis of renal
fibrosis. Pediatric Nephrol. 15:290–301. 2000. View Article : Google Scholar
|
4
|
Ucero AC, Benito-Martin A, Izquierdo MC,
et al: Unilateral ureteral obstruction: beyond obstruction. Int
Urol Nephrol. 46:765–776. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Strutz F: Pathogenesis of
tubulointerstitial fibrosis in chronic allograft dysfunction. Clin
Transplant. 23 (Suppl 21):26–32. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ucero AC, Goncalves S, Benito-Martin A, et
al: Obstructive renal injury: from fluid mechanics to molecular
cell biology. Open Access J Urol. 2:41–55. 2010.PubMed/NCBI
|
7
|
Otera H and Mihara K: Molecular mechanisms
and physiologic functions of mitochondrial dynamics. J Biochem.
149:241–251. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ucero AC, Benito-Martin A, Fuentes-Calvo
I, et al: TNF-related weak inducer of apoptosis (TWEAK) promotes
kidney fibrosis and Ras-dependent proliferation of cultured renal
fibroblast. Biochim Biophys Acta. 1832:1744–1755. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Izquierdo MC, Sanz AB, Mezzano S, et al:
TWEAK (tumor necrosis factor-like weak inducer of apoptosis)
activates CXCL16 expression during renal tubulointerstitial
inflammation. Kidney Int. 81:1098–1107. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Brines M and Cerami A: Discovering
erythropoietin's extra-hematopoietic functions: biology and
clinical promise. Kidney Int. 70:246–250. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Baker JE: Enythropoietin mimics ischemic
preconditioning. Vascul Pharmacol. 42:233–241. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chang YK, Choi DE, Na KR, et al:
Erythropoietin attenuates renal injury in an experimental model of
rat unilateral ureteral obstruction via anti-inflammatory and
anti-apoptotic effects. J Urol. 181:1434–1443. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cassis P, Gallon L, Benigni A, et al:
Erythropoietin, but not the correction of anemia alone, protects
from chronic kidney allograft injury. Kidney Int. 81:903–918. 2012.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Yu XQ, Wu LL, Huang XR, et al: Osteopontin
expression in progressive renal injury in remnant kidney:rule of
angiotension II. Kidney Int. 58:1469–1480. 2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li C, Chen Y and Hong MY: Erythropoietin
protective effect of renal perfusion by pretreatment on acute
global ischemia in rats. Zhongguo Bingli Shengli Zazhi.
20:2336–2338. 2004.
|
16
|
Srisawat N, Manotham K and Eiam-Ong S,
Katavetin P, Praditpornsilpa K and Eiam-Ong S: Erythropoietin and
its non-erythropoietic derivative: do they ameliorate renal
tubulointerstitial injury in ureteral obstruction? Int J Urol.
15:1011–1017. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sharples EJ, Patel N, Brown P, et al:
Erythropoietin protects the kidney against the injury and
dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol.
15:2115–2124. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ates E, Yalcin AU, et al: Protective
effect of erythropoietin on renal ischemia and reperfusion injury.
ANZ J Surg. 75:1100–1105. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chevalier RL, Forbes MS and Thornhill BA:
Ureteral obstruction as a model of renal interstitial fibrosis and
obstructive nephropathy. Kidney Int. 75:1145–1152. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pang M, Kothapally J, Mao H, et al:
Inhibition of histone deacetylase activity attenuates renal
fibroblast activation and interstitial fibrosis in obstructive
nephropathy. Am J Physiol Renal Physiol. 297:F996–F1005. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Cregger M, Berger AJ and Rimm DL:
Immunohistochemistry and quantitative analysis of protein
expression. Arch Pathol Lab Med. 130:1026–1030. 2006.PubMed/NCBI
|
22
|
Hewitson TD, Ho WY and Samuel CS:
Antifibrotic properties of relaxin: in vivo mechanism of action in
experimental renal tubulointerstitial fibrosis. Endocrinol.
151:4938–4948. 2010. View Article : Google Scholar
|
23
|
Yang T, Vesey DA, Johnson DW, Wei MQ and
Gobe GC: Apoptosis of tubulointerstitial chronic inflammatory cells
in progressive renal fibrosis after cancer therapies. Transl Res.
150:40–50. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Izquierdo MC, Sanz AB, Mezzano S, et al:
TWEAK (tumor necrosis factor-like weak inducer of apoptosis)
activates CXCL16 expression during renal tubulointerstitial
inflammation. Kidney Int. 81:1098–1107. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Figueroa-Romero C, Iniguez-Lluhi JA,
Stadler J, et al: SUMOylation of the mitochondrial fission protein
Drpl occurs at multiple nonconsensus sites within the B domain and
is linked to its activity cycle. FASEB J. 23:3917–3927. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Brooks C, Cho SG, et al: Fragmented
mitochondria are sensitized to Bax insertion and activation during
apoptosis. Am J Physiol Cell Physiol. 300:C447–C455. 2011.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang H, Lim PJ, Karbowski M and Monteiro
MJ: Effects of overexpression of huntingtin proteins on
mitochondrial integrity. Hum Mol Genet. 18:737–752. 2009.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Brooks C, Cho SG, Wang CY, Yang T and Dong
Z: Fragmented mitochondria are sensitized to Bax insertion and
activation during apoptosis. Am J Physiol Cell Physiol.
300:C447–C455. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ghezzi P and Brines M: Erythropoietin as
an antiapoptotic, tissue-protective cytokine. Cell Death Differ. 11
(Suppl 1):S37–S44. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ergur BU, Kiray M, Pekcetin C, et al:
Protective effect of erythropoietin pretreatment in testicular
ischemia-reperfusion injury in rats. J Pediatr Surg. 43:722–728.
2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kitamura H, Isaka Y, Takabatake Y, et al:
Nonethropoietic derivative of erythropoietin protect against
tubulointerstitial injury in a unilateral ureteral obstruction
model. Nephrol Dial Transplant. 23:1521–1528. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kuriyams S, Tomonari H, Tokudome G, et al:
Association of angiotensinogen gene polymorphism with
erythropoietin-induced hypertension: a preliminary report.
Hypertens Res. 24:501–505. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jungers P, Choukroun G, Oualim Z, Robino
C, Nguyen AT and Man NK: Beneficial influence of recombinant human
erythropoietin therapy on the rate of progression of chronic renal
failure in predialysis patients. Nephrol Dial Transplant.
16:307–312. 2001. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nakazawa Y, Nishino T, Obata K, et al:
Recombinant human erythropoietin attenuates renal
tubulointerstitial injury in murine adriamycin-induced nephropathy.
J Nephrol. 26:527–533. 2013. View Article : Google Scholar : PubMed/NCBI
|