1
|
Martin P: Wound healing - Aiming for
perfect skin regeneration. Science. 276:75–81. 1997. View Article : Google Scholar : PubMed/NCBI
|
2
|
Singer AJ and Clark RA: Cutaneous wound
healing. N Engl J Med. 341:738–746. 1999. View Article : Google Scholar : PubMed/NCBI
|
3
|
Akbari H, Fatemi MJ, Iranpour M, et al:
The healing effect of nettle extract on second degree burn wounds.
World J Plast Surg. 4:23–28. 2015.PubMed/NCBI
|
4
|
Domergue S, Jorgensen C and Noël D:
Advances in research in animal models of burn-related hypertrophic
scarring. J Burn Care Res. Oct 29–2014.(Epub ahead of print).
View Article : Google Scholar : PubMed/NCBI
|
5
|
Rantfors J and Cassuto J: Role of
histamine receptors in the regulation of edema and circulation
postburn. Burns. 29:769–777. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Santos FX, Arroyo C, Garcia I, et al: Role
of mast cells in the pathogenesis of postburn inflammatory
response: reactive oxygen species as mast cell stimulators. Burns.
26:145–147. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
el Sayed SO and Dyson M: Responses of
dermal mast cells to injury. J Anat. 182:369–376. 1993.PubMed/NCBI
|
8
|
Hebda PA, Collins MA and Tharp MD: Mast
cell and myofibroblast in wound healing. Dermatol Clin. 11:685–696.
1993.PubMed/NCBI
|
9
|
Kovanen PT: Mast cells: multipotent local
effector cells in atherothrombosis. Immunol Rev. 217:105–122. 2007.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhao XY, Zhao LY, Zheng QS, et al: Chymase
induces profibrotic response via transforming growth
factor-beta1/Smad activation in rat cardiac fibroblasts. Mol Cell
Biochem. 310:159–166. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Maruichi M, Takai S, Sugiyama T, et al:
Role of chymase on growth of cultured canine Tenons capsule
fibroblasts and scarring in a canine conjunctival flap model. Exp
Eye Res. 79:111–118. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Saarinen J, Kalkkinen N, Welgus HG and
Kovanen PT: Activation of human interstitial procollagenase through
direct cleavage of the Leu83-Thr84 bond by mast cell chymase. J
Biol Chem. 269:18134–18140. 1994.PubMed/NCBI
|
13
|
Doggrell SA and Wanstall JC: Vascular
chymase: pathophysiological role and therapeutic potential of
inhibition. Cardiovasc Res. 61:653–662. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nishikori Y, Kakizoe E, Kobayashi Y, et
al: Skin mast cell promotion of matrix remodeling in burn wound
healing in mice: relevance of chymase. Arch Dermatol Res.
290:553–560. 1998. View Article : Google Scholar : PubMed/NCBI
|
15
|
Dong X, Chen J, Zhang Y and Cen Y: Mast
cell chymase promotes cell proliferation and expression of certain
cytokines in a dose-dependent manner. Mol Med Rep. 5:1487–1490.
2012.PubMed/NCBI
|
16
|
Wintroub BU, Schechter NB, Lazarus GS,
Kaempfer CE and Schwartz LB: Angiotensin I conversion by human and
rat chymotryptic proteinases. J Invest Dermatol. 83:336–339. 1984.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Takai S, Shiota N, Jin D and Miyazaki M:
Functional role of chymase in angiotensin II formation in human
vascular tissue. J Cardiovasc Pharmacol. 32:826–833. 1998.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Caughey GH, Raymond WW and Wolters PJ:
Angiotensin II generation by mast cell alpha- and beta-chymases.
Biochim Biophys Acta. 1480:245–257. 2000. View Article : Google Scholar : PubMed/NCBI
|
19
|
Schildt B and Nilsson A: Standardized
burns in mice. Eur Surg Res. 2:23–33. 1970. View Article : Google Scholar : PubMed/NCBI
|
20
|
Somboonwong J, Kankaisre M, Tantisira B
and Tantisira MH: Wound healing activities of different extracts of
Centella asiatica in incision and burn wound models: an
experimental animal study. BMC Complement Altern Med. 12:1032012.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Ramos-Gallardo G, Ambriz-Plascencia AR and
Gonzalez-Reynoso L: Systemic steroids use in second-degree burn
using an animal model. Rev Med Inst Mex Seguro Soc. 50:9122012.(In
Spanish). PubMed/NCBI
|
22
|
Gaines C, Poranki D, Du W, Clark RA and
Van Dyke M: Development of a porcine deep partial thickness burn
model. Burns. 39:311–319. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kempf M, Cuttle L, Liu PY, Wang XQ and
Kimble RM: Important improvements to porcine skin burn models, in
search of the perfect burn. Burns. 35:454–455. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cuttle L, Kempf M, Phillips GE, et al: A
porcine deep dermal partial thickness burn model with hypertrophic
scarring. Burns. 32:806–820. 2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Cribbs RK, Luquette MH and Besner GE: A
standardized model of partial thickness scald burns in mice. J Surg
Res. 80:69–74. 1998. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kim DE, Phillips TM, Jeng JC, et al:
Microvascular assessment of burn depth conversion during varying
resuscitation conditions. J Burn Care Rehabil. 22:406–416. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen W, Yu MH, Li YM, Chen WJ and Xia YP:
Beneficial effects of astragalus polysaccharides treatment on
cardiac chymase activities and cardiomyopathy in diabetic hamsters.
Acta Diabetol. 47 (Suppl 1):35–46. 2010. View Article : Google Scholar
|
28
|
Guo T, Chen WQ, Zhang C, Zhao YX and Zhang
Y: Chymase activity is closely related With plaque vulnerability in
a hamster model of atherosclerosis. Atherosclerosis. 207:59–67.
2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Matsumoto T, Wada A, Tsutamoto T, Ohnishi
M, Isono T and Kinoshita M: Chymase inhibition prevents cardiac
fibrosis and improves diastolic dysfunction in the progression of
heart failure. Circulation. 107:2555–2558. 2003. View Article : Google Scholar : PubMed/NCBI
|