1
|
Fan L, Xu C, Wang C, et al: Bmi1 is
required for hepatic progenitor cell expansion and liver tumor
development. PLoS One. 7:e464722012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Park MC, Youn HJ, Chang HK, et al: TOP1
and 2, polysaccharides from Taraxacum officinale, attenuate
CCl4-induced hepatic damage through the modulation of
NF-κB and its regulatory mediators. Food Chem Toxicol.
48:1255–1261. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Srivastava A and Shivanandappa T:
Hepatoprotective effect of the root extract of Decalepis
hamiltonii against carbon tetrachloride-induced oxidative
stress in rats. Food Chem. 118:411–417. 2010. View Article : Google Scholar
|
4
|
Muriel P, Alba N, Pérez-Alvarez VM, et al:
Kupffer cells inhibition prevents hepatic lipid peroxidation and
damage induced by carbon tetrachloride. Comp Biochem Physiol C
Toxicol Pharmacol. 130:219–226. 2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
Harman D: Aging: A theory based on free
radical and radiation chemistry. J Gerontol. 11:298–300. 1956.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Salmon AB, Richardson A and Pérez VI:
Update on the oxidative stress theory of aging: Does oxidative
stress play a role in aging or healthy aging. Free Radic Biol Med.
48:642–655. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Park IK, Qian D, Kiel M, et al: Bmi-1 is
required for maintenance of adult self-renewing haematopoietic stem
cells. Nature. 423:302–305. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang HW, Ding J, Jin JL, et al: Defects
in mesenchymal stem cell self-renewal and cell fate determination
lead to an osteopenic phenotype in Bmi-1 null mice. J Bone Miner
Res. 25:640–652. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Liu J, Cao L, Chen J, et al: Bmi1
regulates mitochondrial function and the DNA damage response
pathway. Nature. 459:387–392. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hauge JG: Glucose dehydrogenase of
bacterium anitratum: An enzyme with a novel prosthetic group. J
Biol Chem. 239:3630–3639. 1964.PubMed/NCBI
|
11
|
Duine JA: Cofactor diversity in biological
oxidations: Implications and applications. Chem Rec. 1:74–83. 2001.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Mitchell AE, Jones AD, Mercer RS and
Rucker RB: Characterization of pyrroloquinoline quinone amino acid
derivatives by electrospray ionization mass spectrometry and
detection in human milk. Anal Biochem. 269:317–325. 1999.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Kumazawa T, Sato K, Seno H, et al: Levels
of pyrroloquinoline quinone in various foods. Biochem J.
307:331–333. 1995.PubMed/NCBI
|
14
|
Stites TE, Mitchell AE and Rucker RB:
Physiological importance of quinoenzymes and the O-quinone family
of cofactors. J Nutr. 130:719–727. 2000.PubMed/NCBI
|
15
|
Steinberg FM, Gershwin ME and Rucker RB:
Dietary pyrroloquinoline quinone: Growth and immune response in
BALB/c mice. J Nutr. 124:744–753. 1994.PubMed/NCBI
|
16
|
Steinberg F, Stites TE, Anderson P, et al:
Pyrroloquinoline quinone improves growth and reproductive
performance in mice fed chemically defined diets. Exp Biol Med
(Maywood). 228:160–166. 2003.PubMed/NCBI
|
17
|
Zhang Y, Feustel PJ and Kimelberg HK:
Neuroprotection by pyrroloquinoline quinone (PQQ) in reversible
middle cerebral artery occlusion in the adult rat. Brain Res.
1094:200–206. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhang Y and Rosenberg PA: The essential
nutrient pyrroloquinoline quinone may act as a neuroprotectant by
suppressing peroxynitrite formation. Eur J Neurosci. 16:1015–1024.
2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhu BQ, Simonis U, Cecchini G, et al:
Comparison of pyrroloquinoline quinone and/or metoprolol on
myocardial infarct size and mitochondrial damage in a rat model of
ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther.
11:119–128. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ohwada K, Takeda H, Yamazaki M, et al:
Pyrroloquinoline quinone (PQQ) prevents cognitive deficit caused by
oxidative stress in rats. J Clin Biochem Nutr. 42:29–34. 2008.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Shankar BS, Pandey R, Amin P, et al: Role
of glutathione in augmenting the anticancer activity of
pyrroloquinoline quinone (PQQ). Redox Rep. 15:146–154. 2010.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Ouchi A, Nakano M, Nagaoka S and Mukai K:
Kinetic study of the antioxidant activity of pyrroloquinolinequinol
(PQQH (2), a reduced form of pyrroloquinoline quinone) in micellar
solution. J Agric Food Chem. 57:450–456. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Stites T, Storms D, Bauerly K, et al:
Pyrroloquinoline quinone modulates mitochondrial quantity and
function in mice. J Nutr. 136:390–396. 2006.PubMed/NCBI
|
24
|
Ishii T, Akagawa M, Naito Y, et al:
Pro-oxidant action of pyrroloquinoline quinone: Characterization of
protein oxidative modifications. Biosci Biotechnol Biochem.
74:663–666. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tao R, Karliner JS, Simonis U, et al:
Pyrroloquinoline quinone preserves mitochondrial function and
prevents oxidative injury in adult rat cardiac myocytes. Biochem
Biophys Res Commun. 363:257–262. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Misra HS, Khairnar NP, Barik A, et al:
Pyrroloquinoline-quinone: A reactive oxygen species scavenger in
bacteria. FEBS Lett. 578:26–30. 2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cao G, Gu M, Zhu M, et al: Bmi-1 absence
causes premature brain degeneration. PLoS One. 7:e320152012.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Bauerly K, Harris C, Chowanadisai W, et
al: Altering pyrroloquinoline quinone nutritional status modulates
mitochondrial, lipid, and energy metabolism in rats. Plos One.
6:e217792011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Xue Y, Karaplis AC, Hendy GN, et al:
Genetic models show that parathyroid hormone and
1,25-dihydroxyvitamin D3 play distinct and synergistic roles in
postnatal mineral ion homeostasis and skeletal development. Hum Mol
Genet. 14:1515–1528. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zamzami N, Marchetti P, Castedo M, et al:
Sequential reduction of mitochondrial transmembrane potential and
generation of reactive oxygen species in early programmed cell
death. J Exp Med. 182:367–377. 1995. View Article : Google Scholar : PubMed/NCBI
|
31
|
Bae I, Fan S, Bhatia K, Kohn KW, Fornace
AJ Jr and O'Connor PM: Relationships between G1 Arrest and
Stability of the p53 and p21CiP1/Waf1 Proteins following
gamma-irradiation of human lymphoma cells. Cancer Res.
55:2387–2393. 1995.PubMed/NCBI
|
32
|
Di Pietro C, Piro S, Tabbi G, et al:
Cellular and molecular effects of protons: Apoptosis induction and
potential implications for cancer therapy. Apoptosis. 11:57–66.
2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sano R and Reed JC: ER stress-induced cell
death mechanisms. Biochim Biophys Acta. 1833:3460–3470. 2013.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Tang W, Jiang YF, Ponnusamy M and Diallo
M: Role of Nrf2 in chronic liver disease. World J Gastroenterol.
20:13079–13087. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Weltman MD, Farrell GC, Hall P, et al:
Hepatic cytochrome P450 2E1 is increased in patients with
nonalcoholic steatohepatitis. Hepatology. 27:128–133. 1998.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Okuda M, Li K, Beard MR, et al:
Mitochondrial injury, oxidative stress and antioxidant gene
expression are induced by hepatitis C virus core protein.
Gastroenterology. 122:366–375. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Salisbury SA, Forrest HS, Cruse WB and
Kennard O: A novel coenzyme from bacterial primary alcohol
dehydrogenases. Nature. 280:843–844. 1979. View Article : Google Scholar : PubMed/NCBI
|
38
|
Rucker R, Chowanadisai W and Nakano M:
Potential physiological importance of pyrroloquinoline quinone.
Altern Med Rev. 14:268–277. 2009.PubMed/NCBI
|
39
|
Killgore J, Smidt C, Duich L, et al:
Nutritional importance of pyrroloquinoline quinone. Science.
245:850–852. 1989. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bishop A, Paz MA, Gallop PM, et al:
Methoxatin PQQ in guinea-pig neutrophils. Free Radic Biol Med.
17:311–320. 1994. View Article : Google Scholar : PubMed/NCBI
|
41
|
He K, Nukada H, Urakami T and Murphy MP:
Antioxidant and pro-oxidant properties of pyrroloquinoline quinone
(PQQ): Implications for its function in biological systems. Biochem
Pharmacol. 65:67–74. 2003. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhu B, Zhou H, Teerlink JR, et al:
Pyrroloquinoline quinone (PQQ) decreases myocardial infarct size
and improves cardiac function in rat models of ischemia and
ischemia/reperfusion. Cardiovasc Drugs Ther. 18:421–431. 2004.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Aizenman E, Hartnett KA, Zhong C, et al:
Interaction of the putative essential nutrient pyrroloquinoline
quinone with the N-methyl-D-aspartate receptor redox modulatory
site. J Neurosci. 12:2362–2369. 1992.PubMed/NCBI
|
44
|
Kumar N, Kar A and Panda S:
Pyrroloquinoline quinone ameliorates l-thyroxine-induced
hyperthyroidism and associated problems in rats. Cell Biochem
Funct. 32:538–546. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Jin J, Lv X, Chen L, Zhang W, Li J, Wang
Q, Wang R, Lu X and Miao D: Bmi-1 plays a critical role in
protection from renal tubulointerstitial injury by maintaining
redox balance. Aging Cell. 13:797–809. 2014. View Article : Google Scholar : PubMed/NCBI
|