1
|
Pfaller MA and Diekema DJ: Epidemiology of
invasive mycoses in North America. Crit Rev Microbiol. 36:1–53.
2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bassetti M, Taramasso L, Nicco E, Molinari
MP, Mussap M and Viscoli C: Epidemiology, species distribution,
antifungal susceptibility and outcome of nosocomial candidemia in a
tertiary care hospital in Italy. PLoS One. 6:e241982011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Scorzoni L, de Lucas MP, Mesa-Arango AC,
Fusco-Almeida AM, Lozano E, Cuenca-Estrella M, Mendes-Giannini MJ
and Zaragoza O: Antifungal efficacy during Candida krusei
infection in non-conventional models correlates with the yeast in
vitro susceptibility profile. PLoS One. 8:e600472013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Shorr AF, Gupta V, Sun X, Johannes RS,
Spalding J and Tabak YP: Burden of early-onset candidemia: Analysis
of culture-positive bloodstream infections from a large U.S.
database. Crit Care Med. 37:2519–2526. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Colombo AL, Tobón A, Restrepo A,
Queiroz-Telles F and Nucci M: Epidemiology of endemic systemic
fungal infections in Latin America. Med Mycol. 49:785–798.
2011.PubMed/NCBI
|
6
|
Pushpanathan M, Rajendhran J, Jayashree S,
Sundarakrishnan B, Jayachandran S and Gunasekaran P: Direct cell
penetration of the antifungal peptide, MMGP1, in Candida
albicans. J Pept Sci. 18:657–660. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Arendrup MC: Epidemiology of invasive
candidiasis. Curr Opin Crit Care. 16:445–452. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Leroy O, Gangneux JP, Montravers P, Mira
JP, Gouin F, Sollet JP, Carlet J, Reynes J, Rosenheim M, Regnier B
and Lortholary O: AmarCand Study Group: Epidemiology, management,
and risk factors for death of invasive Candida infections in
critical care: A multicenter, prospective, observational study in
France (2005–2006). Crit Care Med. 37:1612–1618. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Muñoz P, Sánchez-Somolinos M, Alcalá L,
Rodríguez-Créixems M, Peláez T and Bouza E: Candida krusei
fungaemia: Antifungal susceptibility and clinical presentation of
an uncommon entity during 15 years in a single general hospital. J
Antimicrob Chemother. 55:188–193. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Abbas J, Bodey GP, Hanna HA, Mardani M,
Girgawy E, Abi-Said D, Whimbey E, Hachem R and Raad I: Candida
krusei fungemia. An escalating serious infection in
immunocompromised patients. Arch Intern Med. 160:2659–2664. 2000.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Bowdish DM, Davidson DJ and Hancock RE: A
re-evaluation of the role of host defence peptides in mammalian
immunity. Curr Protein Pept Sci. 6:35–51. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Huang J, Hao D and Chen Y, Xu Y, Tan J,
Huang Y, Li F and Chen Y: Inhibitory effects and mechanisms of
physiological conditions on the activity of enantiomeric forms of
an α-helical antibacterial peptide against bacteria. Peptides.
32:1488–1495. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Teixeira V, Feio MJ and Bastos M: Role of
lipids in the interaction of antimicrobial peptides with membranes.
Prog Lipid Res. 51:149–177. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lv Y, Wang J, Gao H, Wang Z, Dong N, Ma Q
and Shan A: Antimicrobial properties and membrane-active mechanism
of a potential α-helical antimicrobial derived from cathelicidin
PMAP-36. PLoS One. 9:e863642014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Auvynet C and Rosenstein Y:
Multifunctional host defense peptides: Antimicrobial peptides, the
small yet big players in innate and adaptive immunity. FEBS J.
276:6497–6508. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shang D, Sun Y, Wang C, Wei S, Ma L and
Sun L: Membrane interaction and antibacterial properties of
chensinin-1, an antimicrobial peptide with atypical structural
features from the skin of Rana chensinensis. Appl Microbiol
Biotechnol. 96:1551–1560. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Vila-Farres X, de la Maria C Garcia,
López-Rojas R, Pachón J, Giralt E and Vila J: In vitro activity of
several antimicrobial peptides against colistin-susceptible and
colistin-resistant Acinetobacter baumannii. Clin Microbiol
Infect. 18:383–387. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Gopal R, Seo CH, Song PI and Park Y:
Effect of repetitive lysine-tryptophan motifs on the bactericidal
activity of antimicrobial peptides. Amino Acids. 44:645–660. 2013.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Li R, Zhang T, Luo J, Wang F, Gu Q, Gan J
and Xiao F: Antifungal activity fragments of N domain of
chromogranin A. Zhong Shan Da Xue Xue. 45:64–67. 2006.(In
Chinese).
|
20
|
Eiden LE: Is chromogranin a prohormone?
Nature. 325:3011987. View Article : Google Scholar : PubMed/NCBI
|
21
|
Simon JP and Aunis D: Biochemistry of the
chromogranin A protein family. Biochem J. 262:1–13. 1989.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Helle KB: Chromogranins: Universal
proteins in secretory organelles from paramecium to man. Neurochem
Int. 17:165–175. 1990. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lugardon K, Raffner R, Goumon Y, Corti A,
Delmas A, Bulet P, Aunis D and Metz-Boutigue MH: Antibacterial and
antifungal activities of vasostatin-1, the N-terminal fragment of
chromogranin A. J Biol Chem. 275:10745–10753. 2000. View Article : Google Scholar : PubMed/NCBI
|
24
|
Radek KA, Lopez-Garcia B, Hupe M, Niesman
IR, Elias PM, Taupenot L, Mahata SK, O'Connor DT and Gallo RL: The
neuroendocrine peptide catestatin is a cutaneous antimicrobial and
induced in the skin after injury. J Invest Dermatol. 128:1525–1534.
2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Akaddar A, Doderer-Lang C, Marzahn MR,
Delalande F, Mousli M, Helle K, Van Dorsselaer A, Aunis D, Dunn BM,
Metz-Boutigue MH and Candolfi E: Catestatin, an endogenous
chromogranin A-derived peptide, inhibits in vitro growth of
Plasmodium falciparum. Cell Mol Life Sci. 67:1005–1015.
2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Mahata SK, Mahata M, Fung MM and O'Connor
DT: Catestatin: A multifunctional peptide from chromogranin A.
Regul Pept. 162:33–43. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lugardon K, Chasserot-Golaz S, Kieffer
A-E, Maget-Dana R, Nullans G, Kieffer B, Aunis D and Metz-Boutigue
MH: Structural and biological characterization of chromofungin, the
antifungal chromogranin A-(47–66)-derived peptide. J Biol Chem.
276:35875–35882. 2001. View Article : Google Scholar : PubMed/NCBI
|
28
|
Blois A, Holmsen H, Martino G, Corti A,
Metz-Boutigue MH and Helle KB: Interactions of chromogranin
A-derived vasostatins and monolayers of phosphatidylserine,
phosphatidylcholine and phosphatidylethanolamine. Regul Pept.
134:30–37. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zasloff M: Antimicrobial peptides of
multicellular organisms. Nature. 415:389–395. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Li Y, Xiang Q, Zhang Q, Huang Y and Su Z:
Overview on the recent study of antimicrobial peptides: Origins,
functions, relative mechanisms and application. Peptides.
37:207–215. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li R, Lu Y, Chen S, Zhang H, Wang B and
Xiong Q: Bioinformatics analysis of animal endogenous peptides
CGA-N46. Dong Wu Yi Xue Jin Zhan. 34:43–46. 2013.(In Chinese).
|
32
|
Clinical and Laboratory Standards
Institute: Reference method for broth dilution antifungal
susceptibility testing of yeasts: Approved standard3rd. CLSI
document M27-A3. Clinical and Laboratory Standards Institute.
Wayne, PA, USA: 2008
|
33
|
Jurevic RJ, Traboulsi RS, Mukherjee PK,
Salata RA and Ghannoum MA: Oral HIV/AIDS Research Alliance Mycology
Focus group: Identification of gentian violet concentration that
does not stain oral mucosa, possesses anti-candidal activity and is
well tolerated. Eur J Clin Microbiol Infect Dis. 30:629–633. 2011.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Chen Y, Sun R and Wang B: Monolayer
behavior of binary systems of betulinic acid and cardiolipin:
Thermodynamic analyses of Langmuir monolayers and AFM study of
Langmuir-Blodgett monolayers. J Colloid Interface Sci. 353:294–300.
2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li D, Ma H, Ye Y, Ji C, Tang X, Ouyang D,
Chen J, Li Y and Ma Y: Deoxynivalenol induces apoptosis in mouse
thymic epithelial cells through mitochondria-mediated pathway.
Environ Toxicol Pharmacol. 38:163–171. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sambrook J and Rusell DW: Molecular
Cloning: A Laboratory Mannual. 3rd. Cold Spring Harbor Laboratory
press; New York: 2001
|
37
|
van Kan EJ, Demel RA, van der Bent A and
de Kruijff B: The role of the abundant phenylalanines in the mode
of action of the antimicrobial peptide clavanin. Biochim Biophys
Acta. 1615:84–92. 2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hancock RE and Scott MG: The role of
antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA.
97:8856–8861. 2000. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mochon AB and Liu H: The antimicrobial
peptide histatin-5 causes a spatially restricted disruption on the
Candida albicans surface, allowing rapid entry of the
peptide into the cytoplasm. PLoS Pathog. 4:e10001902008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bobek LA and Situ H: MUC7 20-Mer:
Investigation of antimicrobial activity, secondary structure and
possible mechanism of antifungal action. Antimicrob Agents
Chemother. 47:643–652. 2003. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bolintineanu D, Hazrati E, Davis HT,
Lehrer RI and Kaznessis YN: Antimicrobial mechanism of pore-forming
protegrin peptides: 100 pores to kill E. coli. Peptides.
31:1–8. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Park CB, Kim HS and Kim SC: Mechanism of
action of the antimicrobial peptide buforin II: Buforin II kills
microorganisms by penetrating the cell membrane and inhibiting
cellular functions. Biochem Biophys Res Commun. 244:253–257. 1998.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Kochervinskii VV, Yudin SG, Zanaveskina
IS, Arkharova HA, Klechkovskaya VV and Lokshin BV: Structure and
appearance of residual polarization in thin films of polyvinylidene
fluoride prepared via the Langmuir-Blodgett method. Polym Sci Ser
A. 52:40–48. 2010. View Article : Google Scholar
|
44
|
Bensassi F, Gallerne C, el Dein OS,
Hajlaoui MR, Bacha H and Lemaire C: Mechanism of Alternariol
monomethyl ether-induced mitochondrial apoptosis in human colon
carcinoma cells. Toxicology. 290:230–240. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sander CS, Hipler UC, Wollina U and Elsner
P: Inhibitory effect of terbinafine on reactive oxygen species
(ROS) generation by Candida albicans. Mycoses. 45:152–155.
2002. View Article : Google Scholar : PubMed/NCBI
|
46
|
Koshlukova SE, Lloyd TL, Araujo MW and
Edgerton M: Salivary histatin 5 induces non-lytic release of ATP
from Candida albicans leading to cell death. J Biol Chem.
274:18872–18879. 1999. View Article : Google Scholar : PubMed/NCBI
|
47
|
Moreno AB, Del Pozo A Martínez and Segundo
B San: Biotechnologically relevant enzymes and proteins. Antifungal
mechanism of the Aspergillus giganteus AFP against the rice
blast fungus Magnaporthe grisea. Appl Microbiol Biotechnol.
72:883–895. 2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhang J, Wu X and Zhang SQ: Antifungal
mechanism of antibacterial peptide ABP-CM4, from Bombyx mori
against Aspergillus niger. Biotechnol Lett. 30:2157–2163.
2008. View Article : Google Scholar : PubMed/NCBI
|