1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Morgan TM, Keegan KA and Clark PE: Bladder
cancer. Curr Opin Oncol. 23:275–282. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
van Rhijn BW, Burger M, Lotan Y, Solsona
E, Stief CG, Sylvester RJ, Witjes JA and Zlotta AR: Recurrence and
progression of disease in non-muscle-invasive bladder cancer: From
epidemiology to treatment strategy. Eur Urol. 56:430–442. 2009.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Lee CT, Dunn RL, Ingold C, Montie JE and
Wood DP Jr: Early-stage bladder cancer surveillance does not
improve survival if high-risk patients are permitted to progress to
muscle invasion. Urology. 69:1068–1072. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Prout GR Jr, Griffin PP and Shipley WU:
Bladder carcinoma as a systemic disease. Cancer. 43:2532–2539.
1979. View Article : Google Scholar : PubMed/NCBI
|
6
|
Parsons JT: Focal adhesion kinase: The
first ten years. J Cell Sci. 116:1409–1416. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lechertier T and Hodivala-Dilke K: Focal
adhesion kinase and tumour angiogenesis. J Pathol. 226:404–412.
2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Okamoto H, Yasui K, Zhao C, Arii S and
Inazawa J: PTK2 and EIF3S3 genes may be amplification targets at
8q23-q24 and are associated with large hepatocellular carcinomas.
Hepatology. 38:1242–1249. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Park JH, Lee BL, Yoon J, Kim J, Kim MA,
Yang HK and Kim WH: Focal adhesion kinase (FAK) gene amplification
and its clinical implications in gastric cancer. Hum Pathol.
41:1664–1673. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sulzmaier FJ, Jean C and Schlaepfer DD:
FAK in cancer: Mechanistic findings and clinical applications. Nat
Rev Cancer. 14:598–610. 2014. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Oktay MH, Oktay K, Hamele-Bena D, Buyuk A
and Koss LG: Focal adhesion kinase as a marker of malignant
phenotype in breast and cervical carcinomas. Hum Pathol.
34:240–245. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cancer Genome Atlas Research Network:
Integrated genomic analyses of ovarian carcinoma. Nature.
474:609–615. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cancer Genome Atlas N Network:
Comprehensive molecular portraits of human breast tumours. Nature.
490:61–70. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lu H, Wang L, Gao W, Meng J, Dai B, Wu S,
Minna J, Roth JA, Hofstetter WL, Swisher SG and Fang B: IGFBP2/FAK
pathway is causally associated with dasatinib resistance in
non-small cell lung cancer cells. Mol Cancer Ther. 12:2864–2873.
2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Schober M and Fuchs E: Tumor-initiating
stem cells of squamous cell carcinomas and their control by TGF-β
and integrin/focal adhesion kinase (FAK) signaling. Proc Natl Acad
Sci USA. 108:10544–10549. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wendt MK, Smith JA and Schiemann WP:
Transforming growth factor-β-induced epithelial-mesenchymal
transition facilitates epidermal growth factor-dependent breast
cancer progression. Oncogene. 29:6485–6498. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Luo M and Guan JL: Focal adhesion kinase:
A prominent determinant in breast cancer initiation, progression
and metastasis. Cancer Lett. 289:127–139. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sima N, Wang W, Kong D, Deng D, Xu Q, Zhou
J, Xu G, Meng L, Lu Y, Wang S and Ma D: RNA interference against
HPV16 E7 oncogene leads to viral E6 and E7 suppression in cervical
cancer cells and apoptosis via upregulation of Rb and p53.
Apoptosis. 13:273–281. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li BH, Zhou JS, Ye F, Cheng XD, Zhou CY,
Lu WG and Xie X: Reduced miR-100 expression in cervical cancer and
precursors and its carcinogenic effect through targeting PLK1
protein. Eur J Cancer. 47:2166–2174. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sima N, Wang S, Wang W, Kong D, Xu Q, Tian
X, Luo A, Zhou J, Xu G, Meng L, et al: Antisense targeting human
papillomavirus type 16 E6 and E7 genes contributes to apoptosis and
senescence in SiHa cervical carcinoma cells. Gynecol Oncol.
106:299–304. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Guan JL and Shalloway D: Regulation of
focal adhesion-associated protein tyrosine kinase by both cellular
adhesion and oncogenic transformation. Nature. 358:63881992.
View Article : Google Scholar
|
22
|
Fresno Vara JA, Casado E, de Castro J,
Cejas P, Belda-Iniesta C and González-Barón M: PI3K/Akt signalling
pathway and cancer. Cancer Treat Rev. 30:193–204. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sonoda Y, Watanabe S, Matsumoto Y,
Aizu-Yokota E and Kasahara T: FAK is the upstream signal protein of
the phosphatidylinositol 3-kinase-Akt survival pathway in hydrogen
peroxide-induced apoptosis of a human glioblastoma cell line. J
Biol Chem. 274:10566–10570. 1999. View Article : Google Scholar : PubMed/NCBI
|
24
|
Linder ME and Burr JG: Nonmyristoylated
p60v-src fails to phosphorylate proteins of 115–120 kDa in chicken
embryo fibroblasts. Proc Natl Acad Sci USA. 85:2608–2612. 1988.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Reynolds AB, Roesel DJ, Kanner SB and
Parsons JT: Transformation-specific tyrosine phosphorylation of a
novel cellular protein in chicken cells expressing oncogenic
variants of the avian cellular src gene. Mol Cell Biol. 9:629–638.
1989.PubMed/NCBI
|
26
|
Kanner SB, Reynolds AB, Vines RR and
Parsons JT: Monoclonal antibodies to individual
tyrosine-phosphorylated protein substrates of oncogene-encoded
tyrosine kinases. Proc Natl Acad Sci USA. 87:3328–3332. 1990.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Guan JL, Trevithick JE and Hynes RO:
Fibronectin/integrin interaction induces tyrosine phosphorylation
of a 120-kDa protein. Cell Regul. 2:951–964. 1991.PubMed/NCBI
|
28
|
Schaller MD, Borgman CA, Cobb BS, Vines
RR, Reynolds AB and Parsons JT: pp125FAK a structurally distinctive
protein-tyrosine kinase associated with focal adhesions. Proc Natl
Acad Sci USA. 89:5192–5196. 1992. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hanks SK, Calalb MB, Harper MC and Patel
SK: Focal adhesion protein-tyrosine kinase phosphorylated in
response to cell attachment to fibronectin. Proc Natl Acad Sci USA.
89:8487–8491. 1992. View Article : Google Scholar : PubMed/NCBI
|
30
|
Schaller MD, Hildebrand JD, Shannon JD,
Fox JW, Vines RR and Parsons JT: Autophosphorylation of the focal
adhesion kinase, pp125FAK, directs SH2-dependent binding of
pp60src. Mol Cell Biol. 14:1680–1688. 1994.PubMed/NCBI
|
31
|
Park MS, Kim YH and Lee JW: FAK mediates
signal crosstalk between type II collagen and TGF-beta 1 cascades
in chondrocytic cells. Matrix Biol. 29:135–142. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Duvall E, Wyllie AH and Morris RG:
Macrophage recognition of cells undergoing programmed cell death
(apoptosis). Immunology. 56:351–358. 1985.PubMed/NCBI
|
33
|
Frisch SM, Vuori K, Ruoslahti E and
Chan-Hui PY: Control of adhesion-dependent cell survival by focal
adhesion kinase. J Cell Biol. 134:793–799. 1996. View Article : Google Scholar : PubMed/NCBI
|
34
|
Sonoda Y, Kasahara T, Yokota-Aizu E, Ueno
M and Watanabe S: A suppressive role of p125FAK protein tyrosine
kinase in hydrogen peroxide-induced apoptosis of T98G cells.
Biochem Biophys Res Commun. 241:769–774. 1997. View Article : Google Scholar : PubMed/NCBI
|
35
|
Clemente CF, Tornatore TF, Theizen TH,
Deckmann AC, Pereira TC, Lopes-Cendes I, Souza JR and Franchini KG:
Targeting focal adhesion kinase with small interfering RNA prevents
and reverses load-induced cardiac hypertrophy in mice. Circ Res.
101:1339–1348. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Duxbury MS, Ito H, Benoit E, Zinner MJ,
Ashley SW and Whang EE: RNA interference targeting focal adhesion
kinase enhances pancreatic adenocarcinoma gemcitabine
chemosensitivity. Biochem Biophys Res Commun. 311:786–792. 2003.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Chan KT, Cortesio CL and Huttenlocher A:
FAK alters invadopodia and focal adhesion composition and dynamics
to regulate breast cancer invasion. J Cell Biol. 185:357–370. 2009.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Thamilselvan V, Craig DH and Basson MD:
FAK association with multiple signal proteins mediates
pressure-induced colon cancer cell adhesion via a Src-dependent
PI3K/Akt pathway. FASEB J. 21:1730–1741. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Shi Q, Bao S, Song L, Wu Q, Bigner DD,
Hjelmeland AB and Rich JN: Targeting SPARC expression decreases
glioma cellular survival and invasion associated with reduced
activities of FAK and ILK kinases. Oncogene. 26:4084–4094. 2007.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Leask A: Focal adhesion kinase: A key
mediator of transforming growth factor beta signaling in
fibroblasts. Adv Wound Care (New Rochelle). 2:247–249. 2013.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Wang SE, Xiang B, Zent R, Quaranta V,
Pozzi A and Arteaga CL: Transforming growth factor beta induces
clustering of HER2 and integrins by activating Src-focal adhesion
kinase and receptor association to the cytoskeleton. Cancer Res.
69:475–482. 2009. View Article : Google Scholar : PubMed/NCBI
|
42
|
Schaller MD: Cellular functions of FAK
kinases: Insight into molecular mechanisms and novel functions. J
Cell Sci. 123:1007–1013. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Mitra SK and Schlaepfer DD:
Integrin-regulated FAK-Src signaling in normal and cancer cells.
Curr Opin Cell Biol. 18:516–523. 2006. View Article : Google Scholar : PubMed/NCBI
|
44
|
Chiang GJ, Billmeyer BR, Canes D, Stoffel
J, Moinzadeh A, Austin CA, Kosakowski M, Rieger-Christ KM,
Libertino JA and Summerhayes IC: The src-family kinase inhibitor
PP2 suppresses the in vitro invasive phenotype of bladder carcinoma
cells via modulation of Akt. BJU Int. 96:416–422. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wen LP, Fahrni JA, Troie S, Guan JL, Orth
K and Rosen GD: Cleavage of focal adhesion kinase by caspases
during apoptosis. J Biol Chem. 272:26056–26061. 1997. View Article : Google Scholar : PubMed/NCBI
|
46
|
Levkau B, Herren B, Koyama H, Ross R and
Raines EW: Caspase-mediated cleavage of focal adhesion kinase
pp125FAK and disassembly of focal adhesions in human endothelial
cell apoptosis. J Exp Med. 187:579–586. 1998. View Article : Google Scholar : PubMed/NCBI
|
47
|
van de Water B, Nagelkerke JF and Stevens
JL: Dephosphorylation of focal adhesion kinase (FAK) and loss of
focal contacts precede caspase-mediated cleavage of FAK during
apoptosis in renal epithelial cells. J Biol Chem. 274:13328–13337.
1999. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sonoda Y, Matsumoto Y, Funakoshi M,
Yamamoto D, Hanks SK and Kasahara T: Anti-apoptotic role of focal
adhesion kinase (FAK). Induction of inhibitor-of-apoptosis proteins
and apoptosis suppression by the overexpression of FAK in a human
leukemic cell line, HL-60. J Biol Chem. 275:16309–16315. 2000.
View Article : Google Scholar : PubMed/NCBI
|