1
|
Albert MS, DeKosky ST, Dickson D, Dubois
B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen
RC, et al: The diagnosis of mild cognitive impairment due to
Alzheimer's disease: Recommendations from the National Institute on
Aging-Alzheimer's Association workgroups on diagnostic guidelines
for Alzheimer's disease. Alzheimers Dement. 7:270–279. 2011.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Alzheimer's Association: 2013 Alzheimer's
disease facts and figures. Alzheimers Dement. 9:208–245. 2013.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Jack CR Jr, Albert MS, Knopman DS, McKhann
GM, Sperling RA, Carrillo MC, Thies B and Phelps CH: Introduction
to the recommendations from the National Institute on
Aging-Alzheimer's Association workgroups on diagnostic guidelines
for Alzheimer's disease. Alzheimers Dement. 7:257–262. 2011.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Sperling RA, Aisen PS, Beckett LA, Bennett
DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ,
et al: Toward defining the preclinical stages of Alzheimer's
disease: Recommendations from the National Institute on
Aging-Alzheimer's Association workgroups on diagnostic guidelines
for Alzheimer's disease. Alzheimers Dement. 7:280–292. 2011.
View Article : Google Scholar : PubMed/NCBI
|
5
|
DeCarli C: Mild cognitive impairment:
Prevalence, prognosis, aetiology, and treatment. Lancet Neurol.
2:15–21. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Petersen RC: Mild cognitive impairment:
Current research and clinical implications. Semin Neurol. 27:22–31.
2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Jack CR Jr, Petersen RC, Xu YC, O'Brien
PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG and Kokmen
E: Prediction of AD with MRI-based hippocampal volume in mild
cognitive impairment. Neurology. 52:1397–1403. 1999. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mufson EJ, Chen EY, Cochran EJ, Beckett
LA, Bennett DA and Kordower JH: Entorhinal cortex beta-amyloid load
in individuals with mild cognitive impairment. Exp Neurol.
158:469–490. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Price JL and Morris JC: Tangles and
plaques in nondemented aging and ‘preclinical’ Alzheimer's disease.
Ann Neurol. 45:358–368. 1999. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lautenschlager NT, Riemenschneider M,
Drzezga A and Kurz AF: Primary degenerative mild cognitive
impairment: Study population, clinical, brain imaging and
biochemical findings. Dement Geriatr Cogn Disord. 12:379–386. 2001.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Hogervorst E, Bandelow S, Combrinck M and
Smith AD: Low free testosterone is an independent risk factor for
Alzheimer's disease. Exp Gerontol. 39:1633–1639. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hogervorst E, Combrinck M and Smith AD:
Testosterone and gonadotropin levels in men with dementia. Neuro
Endocrinol Lett. 24:203–208. 2003.PubMed/NCBI
|
13
|
Hogervorst E, Williams J, Budge M,
Barnetson L, Combrinck M and Smith AD: Serum total testosterone is
lower in men with Alzheimer's disease. Neuro Endocrinol Lett.
22:163–168. 2001.PubMed/NCBI
|
14
|
Paoletti AM, Congia S, Lello S, Tedde D,
Orrù M, Pistis M, Pilloni M, Zedda P, Loddo A and Melis GB: Low
androgenization index in elderly women and elderly men with
Alzheimer's disease. Neurology. 62:301–303. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Watanabe T, Koba S, Kawamura M, Itokawa M,
Idei T, Nakagawa Y, Iguchi T and Katagiri T: Small dense
low-density lipoprotein and carotid atherosclerosis in relation to
vascular dementia. Metabolism. 53:476–482. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Manly JJ, Merchant CA, Jacobs DM, Small
SA, Bell K, Ferin M and Mayeux R: Endogenous estrogen levels and
Alzheimer's disease among postmenopausal women. Neurology.
54:833–837. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Moffat SD, Zonderman AB, Metter EJ,
Blackman MR, Harman SM and Resnick SM: Longitudinal assessment of
serum free testosterone concentration predicts memory performance
and cognitive status in elderly men. J Clin Endocrinol Metab.
87:5001–5007. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tsolaki M, Grammaticos P, Karanasou C,
Balaris V, Kapoukranidou D, Kalpidis I, Petsanis K and Dedousi E:
Serum estradiol, progesterone, testosterone, FSH and LH levels in
postmenopausal women with Alzheimer's dementia. Hell J Nucl Med.
8:39–42. 2005.PubMed/NCBI
|
19
|
Chu LW, Tam S, Wong RL, Yik PY, Song Y,
Cheung BM, Morley JE and Lam KS: Bioavailable testosterone predicts
a lower risk of Alzheimer's disease in older men. J Alzheimers Dis.
21:1335–1345. 2010.PubMed/NCBI
|
20
|
Pike CJ, Rosario ER and Nguyen TV:
Androgens, aging, and Alzheimer's disease. Endocrine. 29:233–241.
2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu L, Orozco IJ, Planel E, Wen Y,
Bretteville A, Krishnamurthy P, Wang L, Herman M, Figueroa H, Yu
WH, et al: A transgenic rat that develops Alzheimer's disease-like
amyloid pathology, deficits in synaptic plasticity and cognitive
impairment. Neurobiol Dis. 31:46–57. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Corbyn Z: New set of Alzheimer's trials
focus on prevention. Lancet. 381:614–615. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ambati J and Fowler BJ: Mechanisms of
age-related macular degeneration. Neuron. 75:26–39. 2012.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Bisaz R, Boadas-Vaello P, Genoux D and
Sandi C: Age-related cognitive impairments in mice with a
conditional ablation of the neural cell adhesion molecule. Learn
Mem. 20:183–193. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Woolley CS and McEwen BS: WoolleyCS:
Estradiol mediates fluctuation in hippocampal synapse density
during the estrous cycle in the adult rat. J Neurosci.
12:2549–2554. 1992.PubMed/NCBI
|
26
|
Scheff SW and Price DA: Synaptic density
in the inner molecular layer of the hippocampal dentate gyrus in
Alzheimer disease. J Neuropathol Exp Neurol. 57:1146–1153. 1998.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Leranth C, Petnehazy O and MacLusky NJ:
Gonadal hormones affect spine synaptic density in the CA1
hippocampal subfield of male rats. J Neurosci. 23:1588–1592.
2003.PubMed/NCBI
|
28
|
Takeda T, Hosokawa M and Higuchi K:
Senescence-accelerated mouse (SAM): A novel murine model of
senescence. Exp Gerontol. 32:105–109. 1997. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tresguerres JA, Kireev R, Forman K, Cuesta
S, Tresguerres AF and Vara E: Effect of chronic melatonin
administration on several physiological parameters from old Wistar
rats and SAMP8 mice. Curr Aging Sci. 5:242–253. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Morley JE, Farr SA, Kumar VB and Armbrecht
HJ: The SAMP8 mouse: A model to develop therapeutic interventions
for Alzheimer's disease. Curr Pharm Des. 18:1123–1130. 2012.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Kang L, Li S, Xing Z, Li J, Su Y, Fan P,
Wang L and Cui H: Dihydrotestosterone treatment delays the
conversion from mild cognitive impairment to Alzheimer's disease in
SAMP8 mice. Horm Behav. 65:505–515. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Jia J, Kang L, Li S, Geng D, Fan P, Wang L
and Cui H: Amelioratory effects of testosterone treatment on
cognitive performance deficits induced by soluble Aβ1-42 oligomers
injected into the hippocampus. Horm Behav. 64:477–486. 2013.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Li S, Kang L, Zhang C, Xie G, Li N, Zhang
Y, Du J and Cui H: Effects of dihydrotestosterone on synaptic
plasticity of hippocampus in male SAMP8 mice. Exp Gerontol.
48:778–785. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ma J, Zhang Z, Su Y, Kang L, Geng D, Wang
Y, Luan F, Wang M and Cui H: Magnetic stimulation modulates
structural synaptic plasticity and regulates BDNF-TrkB signal
pathway in cultured hippocampal neurons. Neurochem Int. 62:84–91.
2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mufson EJ, Binder L, Counts SE, DeKosky
ST, de Toledo-Morrell L, Ginsberg SD, Ikonomovic MD, Perez SE and
Scheff SW: Mild cognitive impairment: Pathology and mechanisms.
Acta Neuropathol. 123:13–30. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Terakawa Y, Agnihotri S, Golbourn B, Nadi
M, Sabha N, Smith CA, Croul SE and Rutka JT: The role of drebrin in
glioma migration and invasion. Exp Cell Res. 319:517–528. 2013.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Tu JC, Xiao B, Naisbitt S, et al: Coupling
of mGluR/Homer and PSD-95 complexes by the Shank family of
postsynaptic density proteins. Neuron. 23:583–592. 1999. View Article : Google Scholar : PubMed/NCBI
|
38
|
Du H, Guo L, Yan S, Sosunov AA, McKhann GM
and Yan SS: Early deficits in synaptic mitochondria in an
Alzheimer's disease mouse model. Proc Natl Acad Sci USA.
107:18670–18675. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hatanaka Y, Mukai H, Mitsuhashi K, Hojo Y,
Murakami G, Komatsuzaki Y, Sato R and Kawato S: Androgen rapidly
increases dendritic thorns of CA3 neurons in male rat hippocampus.
Biochem Biophys Res Commun. 381:728–732. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Moffat SD, Zonderman AB, Metter EJ, Kawas
C, Blackman MR, Harman SM and Resnick SM: Free testosterone and
risk for Alzheimer disease in older men. Neurology. 62:188–193.
2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Selkoe DJ: Preventing Alzheimer's disease.
Science. 337:1488–1492. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bell KF and Claudio Cuello A: Altered
synaptic function in Alzheimer's disease. Eur J Pharmacol.
545:11–21. 2006. View Article : Google Scholar : PubMed/NCBI
|
43
|
Bilkei-Gorzo A: Genetic mouse models of
brain ageing and Alzheimer's disease. Pharmacol Ther. 142:244–257.
2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Demartini DR, Schilling LP, da Costa JC
and Carlini CR: Alzheimer's and Parkinson's diseases: An
environmental proteomic point of view. J Proteomics. 104:24–36.
2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Balthazart J, Baillien M, Charlier TD and
Ball GF: Calcium-dependent phosphorylation processes control brain
aromatase in quail. Eur J Neurosci. 17:1591–1606. 2003. View Article : Google Scholar : PubMed/NCBI
|
46
|
Takeuchi Y, Miyamoto E and Fukunaga K:
Activation of the rat dopamine D2 receptor promoter by
mitogen-activated protein kinase and Ca2+/calmodulin-dependent
protein kinase II pathways. J Neurochem. 83:784–796. 2002.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Ishida A, Shigeri Y, Taniguchi T and
Kameshita I: Protein phosphatases that regulate multifunctional
Ca2+/calmodulin-dependent protein kinases: From biochemistry to
pharmacology. Pharmacol Ther. 100:291–305. 2003. View Article : Google Scholar : PubMed/NCBI
|
48
|
Ooishi Y, Kawato S, Hojo Y, Hatanaka Y,
Higo S, Murakami G, Komatsuzaki Y, Ogiue-Ikeda M, Kimoto T and
Mukai H: Modulation of synaptic plasticity in the hippocampus by
hippocampus-derived estrogen and androgen. J Steroid Biochem Mol
Biol. 131:37–51. 2012. View Article : Google Scholar : PubMed/NCBI
|
49
|
Spires TL, Meyer-Luehmann M, Stern EA,
McLean PJ, Skoch J, Nguyen PT, Bacskai BJ and Hyman BT: Dendritic
spine abnormalities in amyloid precursor protein transgenic mice
demonstrated by gene transfer and intravital multiphoton
microscopy. J Neurosci. 25:7278–7287. 2005. View Article : Google Scholar : PubMed/NCBI
|
50
|
Voineskos D, Rogasch NC, Rajji TK,
Fitzgerald PB and Daskalakis ZJ: A review of evidence linking
disrupted neural plasticity to schizophrenia. Can J Psychiatry.
58:86–92. 2013.PubMed/NCBI
|
51
|
Sheng M and Kim MJ: Postsynaptic signaling
and plasticity mechanisms. 298:776–780. 2002.
|
52
|
Hernandez PJ and Abel T: The role of
protein synthesis in memory consolidation: Progress amid decades of
debate. Neurobiol Learn Mem. 89:293–311. 2008. View Article : Google Scholar : PubMed/NCBI
|
53
|
Hasan A, Nitsche MA, Rein B,
Schneider-Axmann T, Guse B, Gruber O, Falkai P and Wobrock T:
Dysfunctional long-term potentiation-like plasticity in
schizophrenia revealed by transcranial direct current stimulation.
Behav Brain Res. 224:15–22. 2011. View Article : Google Scholar : PubMed/NCBI
|
54
|
Honer WG, Dickson DW, Gleeson J and Davies
P: Regional synaptic pathology in Alzheimer's disease. Neurobiol
Aging. 13:375–382. 1992. View Article : Google Scholar : PubMed/NCBI
|
55
|
Davidsson P and Blennow K: Neurochemical
dissection of synaptic pathology in Alzheimer's disease. Int
Psychogeriatr. 10:11–23. 1998. View Article : Google Scholar : PubMed/NCBI
|
56
|
Harigaya Y, Shoji M, Shirao T and Hirai S:
Disappearance of actin-binding protein, drebrin, from hippocampal
synapses in Alzheimer's disease. J Neurosci Res. 43:87–92. 1996.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Gardoni F, Marcello E and Di Luca M:
Postsynaptic density-membrane associated guanylate kinase proteins
(PSD- MAGUKs) and their role in CNS disorders. Neuroscience.
158:324–333. 2009. View Article : Google Scholar : PubMed/NCBI
|
58
|
Kirchberg BC, Cohen JR, Adelsky MB,
Buthorn JJ, Gomar JJ, Gordon M, Koppel J, Christen E,
Conejero-Goldberg C, Davies P, et al: Semantic distance
abnormalities in mild cognitive impairment: Their nature and
relationship to function. Am J Psychiatry. 169:1275–1283. 2012.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Verma M and Howard RJ: Semantic memory and
language dysfunction in early Alzheimer's disease: A review. Int J
Geriatr Psychiatry. 27:1209–1217. 2012. View Article : Google Scholar : PubMed/NCBI
|
60
|
Kwon SE and Chapman ER: Synaptophysin
regulates the kinetics of synaptic vesicle endocytosis in central
neurons. Neuron. 70:847–854. 2011. View Article : Google Scholar : PubMed/NCBI
|
61
|
Sultana R, Banks WA and Butterfield DA:
Decreased levels of PSD95 and two associated proteins and increased
levels of BCl2 and caspase 3 in hippocampus from subjects with
amnestic mild cognitive impairment: Insights into their potential
roles for loss of synapses and memory, accumulation of Abeta, and
neurodegeneration in a prodromal stage of Alzheimer's disease. J
Neurosci Res. 88:469–477. 2010.PubMed/NCBI
|
62
|
Leranth C, Hajszan T and MacLusky NJ:
Androgens increase spine synapse density in the CA1 hippocampal
subfield of ovariectomized female rats. J Neurosci. 24:495–499.
2004. View Article : Google Scholar : PubMed/NCBI
|
63
|
Counts SE, He B, Nadeem M, Wuu J, Scheff
SW and Mufson EJ: Hippocampal drebrin loss in mild cognitive
impairment. Neurodegener Dis. 10:216–219. 2012. View Article : Google Scholar : PubMed/NCBI
|
64
|
Pugazhenthi S, Wang M, Pham S, Sze CI and
Eckman CB: Downregulation of CREB expression in Alzheimer's brain
and in Aβ-treated rat hippocampal neurons. Mol Neurodegener.
6:602011. View Article : Google Scholar : PubMed/NCBI
|
65
|
Satoh J, Tabunoki H and Arima K: Molecular
network analysis suggests aberrant CREB-mediated gene regulation in
the Alzheimer disease hippocampus. Dis Markers. 27:239–252. 2009.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Saura CA and Valero J: The role of CREB
signaling in Alzheimer's disease and other cognitive disorders. Rev
Neurosci. 22:153–169. 2011. View Article : Google Scholar : PubMed/NCBI
|