1
|
Hung HA, Sun G, Keles S and Svaren J:
Dynamic regulation of Schwann cell enhancers after peripheral nerve
injury. J Biol Chem. 290:6937–6950. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chew SY, Mi R, Hoke A and Leong KW: The
effect of the alignment of electrospun fibrous scaffolds on Schwann
cell maturation. Biomaterials. 29:653–661. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ishikawa N, Suzuki Y, Dezawa M, Kataoka K,
Ohta M, Cho H and Ide C: Peripheral nerve regeneration by
transplantation of BMSC-derived Schwann cells as chitosan gel
sponge scaffolds. J Biomed Mater Res A. 89:1118–1124. 2009.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Triolo D, Dina G, Lorenzetti I, Malaguti
M, Morana P, Del Carro U, Comi G, Messing A, Quattrini A and
Previtali SC: Loss of glial fibrillary acidic protein (GFAP)
impairs Schwann cell proliferation and delays nerve regeneration
after damage. J Cell Sci. 119:3981–3993. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Heinen A, Beyer F, Tzekova N, Hartung HP
and Küry P: Fingolimod induces the transition to a nerve
regeneration promoting Schwann cell phenotype. Exp Neurol.
271:25–35. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nishimoto S, Tanaka H, Okamoto M, Okada K,
Murase T and Yoshikawa H: Methylcobalamin promotes the
differentiation of Schwann cells and remyelination in
lysophosphatidylcholine-induced demyelination of the rat sciatic
nerve. Front Cell Neurosci. 9:2982014.
|
7
|
Zhao Z and Moghadasian MH: Chemistry,
natural sources, dietary intake and pharmacokinetic properties of
ferulic acid: A review. Food Chem. 109:691–702. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chen XH, Lin ZZ, Liu AM, Ye JT, Luo Y, Luo
YY, Mao XX, Liu PQ and Pi RB: The orally combined neuroprotective
effects of sodium ferulate and borneol against transient global
ischaemia in C57 BL/6J mice. J Pharm Pharmacol. 62:915–923. 2010.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Cheng CY, Su SY, Tang NY, Ho TY, Chiang SY
and Hsieh CL: Ferulic acid provides neuroprotection against
oxidative stress-related apoptosis after cerebral
ischemia/reperfusion injury by inhibiting ICAM-1 mRNA expression in
rats. Brain Res. 1209:136–150. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yabe T, Hirahara H, Harada N, Ito N, Nagai
T, Sanagi T and Yamada H: Ferulic acid induces neural progenitor
cell proliferation in vitro and in vivo. Neuroscience. 165:515–524.
2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jiang M, Zhuge X, Yang Y, Gu X and Ding F:
The promotion of peripheral nerve regeneration by
chitooligosaccharides in the rat nerve crush injury model. Neurosci
Lett. 454:239–243. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang H, Liu S, Tian Y, Wu X, He Y, Li C,
Namaka M, Kong J, Li H and Xiao L: Quetiapine inhibits microglial
activation by neutralizing abnormal STIM1-mediated intercellular
calcium homeostasis and promotes myelin repair in a
cuprizone-induced mouse model of demyelination. Front Cell
Neurosci. 9:4922015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fei W, Aixi Y, Danmou X, Wusheng K,
Zhengren P and Ting R: The mood stabilizer valproic acid induces
proliferation and myelination of rat Schwann cells. Neurosci Res.
70:383–390. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
He B, Tao HY and Liu SQ: Neuroprotective
effects of carboxymethylated chitosan on hydrogen peroxide induced
apoptosis in Schwann cells. Eur J Pharmacol. 740:127–134. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Sasagasako N, Toda K, Hollis M and Quarles
RH: Myelin gene expression in immortalized Schwann cells:
relationship to cell density and proliferation. J Neurochem.
66:1432–1439. 1996. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ju DT, Kuo WW, Ho TJ, Paul CR, Kuo CH,
Viswanadha VP, Lin CC, Chen YS, Chang YM and Huang CY:
Protocatechuic acid from alpinia oxyphylla induces schwann cell
migration via ERK1/2, JNK and p38 activation. Am J Chin Med.
43:653–665. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Varejão AS, Cabrita AM, Meek MF,
Bulas-Cruz J, Melo-Pinto P, Raimondo S, Geuna S and
Giacobini-Robecchi MG: Functional and morphological assessment of a
standardized rat sciatic nerve crush injury with a non-serrated
clamp. J Neurotraum. 21:1652–1670. 2004. View Article : Google Scholar
|
18
|
Gupta R, Truong L, Bear D, Chafik D,
Modafferi E and Hung CT: Shear stress alters the expression of
myelin-associated glycoprotein (MAG) and myelin basic protein (MBP)
in Schwann cells. J Orthop Res. 23:1232–1239. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Napoli I, Noon LA, Ribeiro S, Kerai AP,
Parrinello S, Rosenberg LH, Collins MJ, Harrisingh MC, White IJ,
Woodhoo A and Lloyd AC: A central role for the ERK-signaling
pathway in controlling schwann cell plasticity and peripheral nerve
regeneration in vivo. Neuron. 73:729–742. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Schnaar RL and Lopez PH: Myelin-associated
glycoprotein and its axonal receptors. J Neurosci Res.
87:3267–3276. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Painter MW, Brosius Lutz A, Cheng YC,
Latremoliere A, Duong K, Miller CM, Posada S, Cobos EJ, Zhang AX,
et al: Diminished Schwann cell repair responses underlie
age-associated impaired axonal regeneration. Neuron. 83:331–343.
2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ishii A, Furusho M and Bansal R: Sustained
activation of ERK1/2 MAPK in oligodendrocytes and schwann cells
enhances myelin growth and stimulates oligodendrocyte progenitor
expansion. J Neurosci. 33:175–186. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Newbern JM, Li XY, Shoemaker SE, Zhou J,
Zhong J, Wu Y, Bonder D, Hollenback S, Coppola G, Geschwind DH, et
al: Specific functions for ERK/MAPK signaling during PNS
development. Neuron. 69:91–105. 2011. View Article : Google Scholar : PubMed/NCBI
|