1
|
Mizoe JE, Hasegawa A, Jingu K, Takagi R,
Bessyo H, Morikawa T, Tonoki M, Tsuji H, Kamada T, Tsujii H and
Okamoto Y: Organizing Committee for the Working Group for Head Neck
Cancer: Results of carbon ion radiotherapy for head and neck
cancer. Radiother Oncol. 103:32–37. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hamlet S, Faull J, Klein B, Aref A,
Fontanesi J, Stachler R, Shamsa F, Jones L and Simpson M:
Mastication and swallowing in patients with postirradiation
xerostomia. Int J Radiat Oncol Biol Phys. 37:789–796. 1997.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Logemann JA, Pauloski BR, Rademaker AW,
Lazarus CL, Mittal B, Gaziano J, Stachowiak L, MacCracken E and
Newman LA: Xerostomia: 12-month changes in saliva production and
its relationship to perception and performance of swallow function,
oral intake, and diet after chemoradiation. Head Neck. 25:432–437.
2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Nunez MI, McMillan TJ, Valenzuela MT, de
Almodóvar JM Ruiz and Pedraza V: Relationship between DNA damage,
rejoining and cell killing by radiation in mammalian cells.
Radiother Oncol. 39:155–165. 1996. View Article : Google Scholar : PubMed/NCBI
|
5
|
Di Pietro C, Piro S, Tabbi G, Ragusa M, Di
Pietro V, Zimmitti V, Cuda F, Anello M, Consoli U, Salinaro ET, et
al: Cellular and molecular effects of protons: Apoptosis induction
and potential implications for cancer therapy. Apoptosis. 11:57–66.
2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang Y, Liu L, Pazhanisamy SK, Li H, Meng
A and Zhou D: Total body irradiation causes residual bone marrow
injury by induction of persistent oxidative stress in murine
hematopoietic stem cells. Free Radic Biol Med. 48:348–356. 2010.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Hauge JG: Glucose dehydrogenase of
bacterium anitratum: An enzyme with a novel prosthetic group. J
Biol Chem. 239:3630–3639. 1964.PubMed/NCBI
|
8
|
Duine JA: Cofactor diversity in biological
oxidations: Implications and applications. Chem Rec. 1:74–83. 2001.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Mitchell AE, Jones AD, Mercer RS and
Rucker RB: Characterization of pyrroloquinoline quinone amino acid
derivatives by electrospray ionization mass spectrometry and
detection in human milk. Anal Biochem. 269:317–325. 1999.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Kumazawa T, Sato K, Seno H, Ishii A and
Suzuki O: Levels of pyrroloquinoline quinone in various foods.
Biochem J. 307:331–333. 1995. View Article : Google Scholar : PubMed/NCBI
|
11
|
Stites TE, Mitchell AE and Rucker RB:
Physiological importance of quinoenzymes and the O-quinone family
of cofactors. J Nutr. 130:719–727. 2000.PubMed/NCBI
|
12
|
Steinberg FM, Gershwin ME and Rucker RB:
Dietary pyrroloquinoline quinone: Grono irradiationh and immune
response in BALB/c mice. J Nutr. 124:744–753. 1994.PubMed/NCBI
|
13
|
Steinberg F, Stites TE, Anderson P, Storms
D, Chan I, Eghbali S and Rucker R: Pyrroloquinoline quinone
improves grono irradiationh and reproductive performance in mice
fed chemically defined diets. Exp Biol Med (Maywood). 228:160–166.
2003.PubMed/NCBI
|
14
|
Zhang Y, Feustel PJ and Kimelberg HK:
Neuroprotection by pyrroloquinoline quinone (PQQ) in reversible
middle cerebral artery occlusion in the adult rat. Brain Res.
1094:200–206. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang Y and Rosenberg PA: The essential
nutrient pyrroloquinoline quinone may act as a neuroprotectant by
suppressing peroxynitrite formation. Eur J Neurosci. 16:1015–1024.
2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhu BQ, Simonis U, Cecchini G, Zhou HZ, Li
L, Teerlink JR and Karliner JS: Comparison of pyrroloquinoline
quinone and/or metoprolol on myocardial infarct size and
mitochondrial damage in a rat model of ischemia/reperfusion injury.
J Cardiovasc Pharmacol Ther. 11:119–128. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ohwada K, Takeda H, Yamazaki M, Isogai H,
Nakano M, Shimomura M, Fukui K and Urano S: Pyrroloquinoline
Quinone (PQQ) prevents cognitive deficit caused by oxidative stress
in rats. J Clin Biochem Nutr. 42:29–34. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shankar BS, Pandey R, Amin P, Misra HS and
Sainis KB: Role of glutathione in augmenting the anticancer
activity of pyrroloquinoline quinone (PQQ). Redox Rep. 15:146–154.
2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ouchi A, Nakano M, Nagaoka S and Mukai K:
Kinetic study of the antioxidant activity of pyrroloquinolinequinol
(PQQH(2), a reduced form of pyrroloquinolinequinone) in micellar
solution. J Agric Food Chem. 57:450–456. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Stites T, Storms D, Bauerly K, Mah J,
Harris C, Fascetti A, Rogers Q, Tchaparian E, Satre M and Rucker
RB: Pyrroloquinoline quinone modulates mitochondrial quantity and
function in mice. J Nutr. 136:390–396. 2006.PubMed/NCBI
|
21
|
Ishii T, Akagawa M, Naito Y, Handa O,
Takagi T, Mori T, Kumazawa S, Yoshikawa T and Nakayama T:
Pro-oxidant action of pyrroloquinoline quinone: Characterization of
protein oxidative modifications. Biosci Biotechnol Biochem.
74:663–666. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Tao R, Karliner JS, Simonis U, Zheng J,
Zhang J, Honbo N and Alano CC: Pyrroloquinoline quinone preserves
mitochondrial function and prevents oxidative injury in adult rat
cardiac myocytes. Biochem Biophys Res Commun. 363:257–262. 2007.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Misra HS, Khairnar NP, Barik A,
Priyadarsini K Indira, Mohan H and Apte SK:
Pyrroloquinoline-quinone: A reactive oxygen species scavenger in
bacteria. FEBS Lett. 578:26–30. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Bauerly K, Harris C, Chowanadisai W,
Graham J, Havel PJ, Tchaparian E, Satre M, Karliner JS and Rucker
RB: Altering pyrroloquinoline quinone nutritional status modulates
mitochondrial, lipid, and energy metabolism in rats. PLoS One.
6:e217792011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu H, Guo J, Wang L, Chen N, Karaplis A,
Goltzman D and Miao D: Distinctive anabolic roles of
1,25-dihydroxyvitamin D(3) and parathyroid hormone in teeth and
mandible versus long bones. J Endocrinol. 203:203–213. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Kressel M and Groscurth P: Distinction of
apoptotic and necrotic cell death by in situ labelling of
fragmented DNA. Cell Tissue Res. 278:549–556. 1994. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xue Y, Karaplis AC, Hendy GN, Goltzman D
and Miao D: Genetic models show that parathyroid hormone and
1,25-dihydroxyvitamin D3 play distinct and synergistic roles in
postnatal mineral ion homeostasis and skeletal development. Hum Mol
Genet. 14:1515–1528. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zamzami N, Marchetti P, Castedo M,
Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B and
Kroemer G: Sequential reduction of mitochondrial transmembrane
potential and generation of reactive oxygen species in early
programmed cell death. J Exp Med. 182:367–377. 1995. View Article : Google Scholar : PubMed/NCBI
|
29
|
Franke RM, Herdly J and Phillipe E:
Acquired dental defects and salivary gland lesions after
irradiation for carcinoma. J Am Dent Assoc. 70:868–883. 1965.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Cherry CP and Gluckman A: Injury and
repair following irradiation of salivary glands in male rats. Br J
Radiol. 32:596–608. 1959. View Article : Google Scholar : PubMed/NCBI
|
31
|
Phillipe RM: X-ray-induced changes in
function and structure of the rat parotid gland. J Oral Surg.
28:432–437. 1970.PubMed/NCBI
|
32
|
Sholley MM, Sodicoff M and Pratt NE: Early
radiation injury in the rat parotid gland. Reaction of acinar cells
and vascular endothelium. Lab Invest. 31:340–354. 1974.PubMed/NCBI
|
33
|
Dirix P, Nuyts S and Van den Bogaert W:
Radiation-induced xerostomia in patients with head and neck cancer:
A literature review. Cancer. 107:2525–2534. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nuñez MI, McMillan TJ, Valenzuela MT, de
Almodóvar JM Ruiz and Pedraza V: Relationship between DNA damage,
rejoining and cell killing by radiation in mammalian cells.
Radiother Oncol. 39:155–165. 1996. View Article : Google Scholar : PubMed/NCBI
|
35
|
Umegaki K, Aoki S and Esashi T: Whole body
X-ray irradiation to mice decreases ascorbic acid concentration in
bone marrow: Comparison between ascorbic acid and vitamin E. Free
Radic Biol Med. 19:493–497. 1995. View Article : Google Scholar : PubMed/NCBI
|
36
|
Umegaki K and Ichikawa T: Decrease in
vitamin E levels in the bone marrow of mice receiving whole-body
X-ray irradiation. Free Radic Biol Med. 17:439–444. 1994.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Liem IH, Olmos RA, Balm AJ, Keus RB, van
Tinteren H, Takes RP, Muller SH, Bruce AM, Hoefnagel CA and Hilgers
FJ: Evidence for early and persistent impairment of salivary gland
excretion after irradiation of head and neck tumours. Eur J Nucl
Med. 23:1485–1490. 1996. View Article : Google Scholar : PubMed/NCBI
|
38
|
Taylor SE and Miller EG: Preemptive
pharmacologic intervention in radiation-induced salivary
dysfunction. Proc Soc Exp Biol Med. 221:14–26. 1999. View Article : Google Scholar : PubMed/NCBI
|
39
|
Nagler RM: The enigmatic mechanism of
irradiation-induced damage to the major salivary glands. Oral Dis.
8:141–146. 2002. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nagler RM, Baum BJ and Fox PC: Acute
effects of X irradiation on the function of rat salivary glands.
Radiat Res. 136:42–47. 1993. View
Article : Google Scholar : PubMed/NCBI
|
41
|
Pontual ML, Tuji FM, Barros SP, Bóscolo
FN, Novaes PD and de Almeida SM: Ultrastructural evaluation of the
radioprotective effect of sodium selenite on submandibular glands
in rats. J Appl Oral Sci. 15:162–168. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Medina VA, Prestifilippo JP, Croci M,
Carabajal E, Bergoc RM, Elverdin JC and Rivera ES: Histamine
prevents functional and morphological alterations of submandibular
glands induced by ionising radiation. Int J Radiat Biol.
87:284–292. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Cotrim AP, Hyodo F, Matsumoto K, Sowers
AL, Cook JA, Baum BJ, Krishna MC and Mitchell JB: Differential
radiation protection of salivary glands versus tumor by Tempol with
accompanying tissue assessment of Tempol by magnetic resonance
imaging. Clin Cancer Res. 13:4928–4933. 2007. View Article : Google Scholar : PubMed/NCBI
|