1
|
Cichorek M, Wachulska M, Stasiewicz A and
Tymińska A: Skin melanocytes: Biology and development. Postepy
Dermatol Alergol. 30:30–41. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Situm M, Buljan M, Bulić SO and Simić D:
The mechanisms of UV radiation in the development of malignant
melanoma. Coll Antropol 31 (Suppl 1). 13–16. 2007.
|
3
|
Nikolaou V and Stratigos AJ: Emerging
trends in the epidemiology of melanoma. Br J Dermatol. 170:11–19.
2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Leiter U, Buettner PG, Eigentler TK and
Garbe C: Prognostic factors of thin cutaneous melanoma: An analysis
of the central malignant melanoma registry of the german
dermatological society. J Clin Oncol. 22:3660–3667. 2004.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Leiter U, Meier F, Schittek B and Garbe C:
The natural course of cutaneous melanoma. J Surg Oncol. 86:172–178.
2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lee ML, Tomsu K and Von Eschen KB:
Duration of survival for disseminated malignant melanoma: Results
of a meta-analysis. Melanoma Res. 10:81–92. 2000.PubMed/NCBI
|
7
|
Hewitt SM, Hamada S, McDonnell TJ,
Rauscher FJ III and Saunders GF: Regulation of the proto-oncogenes
bcl-2 and c-myc by the Wilms' tumor suppressor gene WT1. Cancer
Res. 55:5386–5389. 1995.PubMed/NCBI
|
8
|
Englert C, Hou X, Maheswaran S, Bennett P,
Ngwu C, Re GG, Garvin AJ, Rosner MR and Haber DA: WT1 suppresses
synthesis of the epidermal growth factor receptor and induces
apoptosis. EMBO J. 14:4662–4675. 1995.PubMed/NCBI
|
9
|
Maheswaran S, Englert C, Bennett P,
Heinrich G and Haber DA: The WT1 gene product stabilizes p53 and
inhibits p53-mediated apoptosis. Genes Dev. 9:2143–2156. 1995.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Haber DA, Englert C and Maheswaran S:
Functional properties of WT1. Med Pediatr Oncol. 27:453–455. 1996.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Englert C, Maheswaran S, Garvin AJ,
Kreidberg J and Haber DA: Induction of p21 by the Wilms' tumor
suppressor gene WT1. Cancer Res. 57:1429–1434. 1997.PubMed/NCBI
|
12
|
Scholz H and Kirschner KM: A role for the
Wilms tumor Protein WT1 in organ development. Physiology
(Bethesda). 20:54–59. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Oji Y, Miyoshi S, Maeda H, Hayashi S,
Tamaki H, Nakatsuka S, Yao M, Takahashi E, Nakano Y, Hirabayashi H,
et al: Overexpression of the Wilms' tumor gene WT1 in de novo lung
cancers. Int J Cancer. 100:297–303. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Loeb DM, Evron E, Patel CB, Sharma PM,
Niranjan B, Buluwela L, Weitzman SA, Korz D and Sukumar S: Wilms'
tumor suppressor gene (WT1) is expressed inprimary breast tumors
despite tumor-specific promoter methylation. Cancer Res.
61:921–925. 2001.PubMed/NCBI
|
15
|
Miyoshi Y, Ando A, Egawa C, Taguchi T,
Tamaki Y, Tamaki H, Sugiyama H and Noguchi S: High expression of
Wilms' tumor suppressor gene predicts poor prognosis in breast
cancer patients. Clin Cancer Res. 8:1167–1171. 2002.PubMed/NCBI
|
16
|
Oji Y, Miyoshi Y, Koga S, Nakano Y, Ando
A, Nakatsuka S, Ikeba A, Takahashi E, Sakaguchi N, Yokota A, et al:
Overexpression of the Wilms' tumor gene WT1 in primary thyroid
cancer. Cancer Sci. 94:606–611. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wagner N, Panelos J, Massi D and Wagner
KD: The Wilms' tumor suppressor WT1 is associated with melanoma
proliferation. Pflugers Arch. 455:839–847. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Garrido-Ruiz MC, Rodriguez-Pinilla SM,
Pérez-Gómez B and Rodriguez-Peralto JL: WT 1 expression in nevi and
melanomas: A marker of melanocytic invasion into the dermis. J
Cutan Pathol. 37:542–548. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wilsher M and Cheerala B: WT1 as a
complementary marker of malignant melanoma: An immunohistochemical
study of whole sections. Histopathology. 51:605–610. 2007.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Zamora-Avila DE, Franco-Molina MA,
Trejo-Avila LM, Rodríguez-Padilla C, Reséndez-Pérez D and
Zapata-Benavides P: RNAi silencing of the WT1 gene inhibits cell
proliferation and induces apoptosis in the B16F10 murine melanoma
cell line. Melanoma Res. 17:341–348. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zapata-Benavides P, Manilla-Muñoz E,
Zamora-Avila DE, Saavedra-Alonso S, Franco-Molina MA, Trejo-Avila
LM, Davalos-Aranda G and Rodríguez-Padilla C: WT1 silencing by RNAi
synergizes with chemotherapeutic agents and induces
chemosensitization to doxorubicin and cisplatin in B16F10 murine
melanoma cells. Oncol Lett. 3:751–755. 2012.PubMed/NCBI
|
22
|
Yu KF, Zhang WQ, Luo LM, Song P, Li D, Du
R, Ren W, Huang D, Lu WL, Zhang X and Zhang Q: The antitumor
activity of a doxorubicin loaded, iRGD-modified
sterically-stabilized liposome on B16-F10 melanoma cells: In vitro
and in vivo evaluation. Int J Nanomedicine. 8:2473–2485.
2013.PubMed/NCBI
|
23
|
Maruyama K, Ishida O, Kasaoka S, Takizawa
T, Utoguchi N, Shinohara A, Chiba M, Kobayashi H, Eriguchi M and
Yanagie H: Intracellular targeting of sodium
mercaptoundecahydrododecaborate (BSH) to solid tumors by
transferrin-PEG liposomes, for boron neutron-capture therapy
(BNCT). J Control Release. 98:195–207. 2004. View Article : Google Scholar : PubMed/NCBI
|
24
|
Torchilin V: Tumor delivery of
macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev.
63:131–135. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Boerman OC, Oyen WJ, van Bloois L,
Koenders EB, van der Meer JW, Corstens FH and Storm G: Optimization
of technetium-99m-labeled PEG liposomes to image focal infection:
Effects of particle size and circulation time. J Nucl Med.
38:489–493. 1997.PubMed/NCBI
|
26
|
Derycke AS and De Witte PA:
Transferrin-mediated targeting of hypericin embedded in sterically
stabilized PEG-liposomes. Int J Oncol. 20:181–187. 2002.PubMed/NCBI
|
27
|
Papahadjopoulos D, Allen TM, Gabizon A,
Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD,
Redemann C, et al: Sterically stabilized liposomes: Improvements in
pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad
Sci USA. 88:11460–11464. 1991. View Article : Google Scholar : PubMed/NCBI
|
28
|
Stavridis JC, Deliconstantinos G,
Psallidopoulos MC, Armenakas NA, Hadjiminas DJ and Hadjiminas J:
Construction of transferrin-coated liposomes for in vivo transport
of exogenous DNA to bone marrow erythroblasts in rabbits. Exp Cell
Res. 164:568–572. 1986. View Article : Google Scholar : PubMed/NCBI
|
29
|
Vidal M, Sainte-Marie J, Philippot JR and
Bienvenue A: The influence of coupling transferrin to liposomes or
minibeads on its uptake and fate in leukemic L2C cells. FEBS Lett.
216:159–163. 1987. View Article : Google Scholar : PubMed/NCBI
|
30
|
Di Giulio A, D'Andrea G, Saletti MA,
Impagnatiello A, D'Alessandro AM and Oratore A: The binding of
human serum transferrin to its specific receptor reconstituted into
liposomes. Cell Signal. 6:83–90. 1994. View Article : Google Scholar : PubMed/NCBI
|
31
|
Egea MA, García ML, Alsina MA and Reig F:
Coating of liposomes with transferrin: Physicochemical study of the
transferrin-lipid system. J Pharm Sci. 83:169–173. 1994. View Article : Google Scholar : PubMed/NCBI
|
32
|
Corley P and Loughrey HC: Targeting of
doxorubicin loaded liposomes to T-cells via the transferrin
receptor. Biochem Soc Trans. 26:S371998. View Article : Google Scholar : PubMed/NCBI
|
33
|
Simões S, Slepushkin V, Gaspar R, de Lima
MC and Düzgüneş N: Gene delivery by negatively charged ternary
complexes of DNA, cationic liposomes and transferrin or fusigenic
peptides. Gene Ther. 5:955–964. 1998. View Article : Google Scholar : PubMed/NCBI
|
34
|
Singh M: Transferrin as a targeting ligand
for liposomes and anticancer drugs. Curr Pharm Des. 5:443–451.
1999.PubMed/NCBI
|
35
|
Eavarone DA, Yu X and Bellamkonda RV:
Targeted drug delivery to C6 glioma by transferrin-coupled
liposomes. J Biomed Mater Res. 51:10–14. 2000. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ishida O, Maruyama K, Tanahashi H,
Iwatsuru M, Sasaki K, Eriguchi M and Yanagie H: Liposomes bearing
polyethyleneglycol-coupled transferrin with intracellular targeting
property to the solid tumors in vivo. Pharm Res. 18:1042–1048.
2001. View Article : Google Scholar : PubMed/NCBI
|
37
|
Voinea M, Dragomir E, Manduteanu I and
Simionescu M: Binding and uptake of transferrin-bound liposomes
targeted to transferrin receptors of endothelial cells. Vascul
Pharmacol. 39:13–20. 2002. View Article : Google Scholar : PubMed/NCBI
|
38
|
Anabousi S, Laue M, Lehr CM, Bakowsky U
and Ehrhardt C: Assessing transferrin modification of liposomes by
atomic force microscopy and transmission electron microscopy. Eur J
Pharm Biopharm. 60:295–303. 2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sharma G, Modgil A, Layek B, Arora K, Sun
C, Law B and Singh J: Cell penetrating peptide tethered bi-ligand
liposomes for delivery to brain in vivo: Biodistribution and
transfection. J Control Release. 167:1–10. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kobayashi T, Ishida T, Okada Y, Ise S,
Harashima H and Kiwada H: Effect of transferrin receptor-targeted
liposomal doxorubicin in P-glycoprotein-mediated drug resistant
tumor cells. Int J Pharm. 329:94–102. 2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Shi N and Pardridge WM: Noninvasive gene
targeting to the brain. Proc Natl Acad Sci USA. 97:7567–7572. 2000.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C (T)) Method. Methods. 25:402–418. 2001.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Xu L, Pirollo KF and Chang EH:
Tumor-targeted p53-gene therapy enhances the efficacy of
conventional chemo/radiotherapy. J Control Release. 74:115–128.
2001. View Article : Google Scholar : PubMed/NCBI
|
44
|
Carlino MS, Haydu LE, Kakavand H, Menzies
AM, Hamilton AL, Yu B, Ng CC, Cooper WA, Thompson JF, Kefford RF,
et al: Correlation of BRAF and NRAS mutation status with outcome,
site of distant metastasis and response to chemotherapy in
metastatic melanoma. Br J Cancer. 111:292–299. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Pilloni L, Bianco P, Difelice E, Cabras S,
Castellanos ME, Atzori L, Ferreli C, Mulas P, Nemolato S and Faa G:
The usefulness of c-Kit in the immunohistochemical assessment of
melanocytic lesions. Eur J Histochem. 55:105–111. 2011. View Article : Google Scholar
|
46
|
Khalili JS, Yu X, Wang J, Hayes BC, Davies
MA, Lizee G, Esmaeli B and Woodman SE: Combination small molecule
MEK and PI3K inhibition enhances uveal melanoma cell death in a
mutant GNAQ and GNA11 dependent manner. Clin Cancer Res.
18:4345–4355. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhou X-P, Gimm O, Hampel H, Niemann T,
Walker MJ and Eng C: Epigenetic PTEN silencing in Malignant
Melanomas without PTEN Mutation. Am J Pathol. 157:1123–1129. 2000.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Terzian T, Torchia EC, Dai D, Robinson SE,
Murao K, Stiegmann RA, Gonzalez V, Boyle GM, Powell MB, Pollock PM,
et al: p53 prevents progression of nevi to melanoma predominantly
through cellcycle regulation. Pigment Cell Melanoma Res.
23:781–794. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Box NF, Vukmer TO and Terzian T: Targeting
p53 in melanoma. Pigment Cell Melanoma Res. 27:8–10. 2014.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Miyagi T, Ahuja H, Kubota T, Kubonishi I,
Koeffler HP and Miyoshi I: Expression of the candidate Wilm's tumor
gene, WT1, in human leukemia cells. Leukemia. 7:970–977.
1993.PubMed/NCBI
|
51
|
Zapata-Benavides P, Tuna M,
Lopez-Berestein G and Tari AM: Downregulation of Wilms' tumor 1
protein inhibits breast cancer proliferation. Biochem Biophys Res
Commun. 295:784–790. 2002. View Article : Google Scholar : PubMed/NCBI
|
52
|
Chen MY, Clark AJ, Chan DC, Ware JL, Holt
SE, Chidambaram A, Fillmore HL and Broaddus WC: Wilms' tumor 1
silencing decreases the viability and chemoresistance of
glioblastoma cells in vitro: A potential role for IGF-1R
de-repression. J Neurooncol. 103:87–102. 2011. View Article : Google Scholar : PubMed/NCBI
|
53
|
Huo X, Ren L, Shang L, Wang X and Wang J:
Effect of WT1 antisense mRNA on the induction of apoptosis in
ovarian carcinoma SKOV3 cells. Eur J Gynaecol Oncol. 32:651–656.
2011.PubMed/NCBI
|
54
|
Chen Y, Bathula SR, Yang Q and Huang L:
Targeted nanoparticles deliver siRNA to melanoma. J Invest
Dermatol. 130:2790–2798. 2010. View Article : Google Scholar : PubMed/NCBI
|
55
|
Zhang X, Jin Y, Zhang B and Chen H:
Preparation of recombinant adenovirus Ad5/F35 containing human WT1
and identification after recombinant adenovirus infected dendritic
cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 30:135–138. 2014.(In
Chinese). PubMed/NCBI
|
56
|
Sundarasetty BS, Singh VK, Salguero G,
Geffers R, Rickmann M, Macke L, Borchers S, Figueiredo C, Schambach
A, Gullberg U, et al: Lentivirus-induced dendritic cells for
immunization against high-risk WT1(+) acute myeloid leukemia. Hum
Gene Ther. 24:220–237. 2013. View Article : Google Scholar : PubMed/NCBI
|
57
|
Shan XY, Liu ZL, Wang B, Guo GX, Wang MS,
Zhuang FL, Cai CS, Zhang MF and Zhang YD: Construction of
recombinant lentiviral vector of Tie2-RNAi and its influence on
malignant melanoma cells in vitro. Zhonghua Zheng Xing Wai Ke Za
Zhi. 27:277–283. 2011.(In Chinese). PubMed/NCBI
|
58
|
Drummond DC, Meyer O, Hong K, Kirpotin DB
and Papahadjopoulos D: Optimizing liposomes for delivery of
chemotherapeutic agents to solid tumors. Pharmacol Rev. 51:691–743.
1999.PubMed/NCBI
|
59
|
Cheever MA, Allison JP, Ferris AS, Finn
OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL,
Weiner LM and Matrisian LM: The prioritization of cancer antigen: A
national cancer institute pilot project for the acceleration of
translational research. Clin Cancer Res. 15:5323–5337. 2009.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Zamora-Avila DE, Zapata-Benavides P,
Franco-Molina MA, Saavedra-Alonso S, Trejo-Avila LM, Reséndez-Pérez
D, Méndez-Vázquez JL, Isaias-Badillo J and Rodríguez-Padilla C: WT1
gene silencing by aerosol delivery of PEI:RNAi complexes inhibits
B16-F10 lung metastases growth. Cancer Gene Ther. 16:892–899. 2009.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Clark AJ, Chan DC, Chen MY, Fillmore H,
Dos Santos WG, Van Meter TE, Graf MR and Broaddus WC:
Down-regulation of Wilms' tumor 1 expression in glioblastoma cells
increases radiosensitivity independently of p53. J Neurooncol.
83:163–172. 2007. View Article : Google Scholar : PubMed/NCBI
|
62
|
Shen H, Xu W, Wu Z, Tang H, Xie Y and
Zhong X: Down-regulation of WT1/+17AA gene expression using RNAi
and modulating leukemia cell chemotherapy resistance.
Haematologica. 92:1270–1272. 2007. View Article : Google Scholar : PubMed/NCBI
|