1
|
United States Food and Drug Association,
Division of Metabolism and Endocrine Drug Products, . Guidelines
for Preclinical and Clinical Evaluation of Agents Used in the
Prevention or Treatment of Postmenopausal Osteoporosis. Food and
Drug Administration, USA. 1997.
|
2
|
Cairoli E, Zhukouskaya VV, Eller-Vainicher
C and Chiodini I: Perspectives on osteoporosis therapies. J
Endocrinol Invest. 38:303–311. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
An J, Yang H, Zhang Q, Liu C, Zhao J,
Zhang L and Chen B: Natural products for treatment of osteoporosis:
The effects and mechanisms on promoting osteoblast-mediated bone
formation. Life Sci. 147:46–58. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Indran IR, Liang RL, Min TE and Yong EL:
Preclinical studies and clinical evaluation of compounds from the
genus Epimedium for osteoporosis and bone health. Pharmacol Ther.
162:188–205. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sze SC, Tong Y, Ng TB, Cheng CL and Cheung
HP: Herba Epimedii: Anti-oxidative properties and its medical
implications. Molecules. 15:7861–7870. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Guo J, Li F, Wu Q, Gong Q, Lu Y and Shi J:
Protective effects of icariin on brain dysfunction induced by
lipopolysaccharide in rats. Phytomedicine. 17:950–955. 2010.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Li S, Dong P, Wang J, Zhang J, Gu J, Wu X,
Wu W, Fei X, Zhang Z, Wang Y, et al: Icariin, a natural flavonol
glycoside, induces apoptosis in human hepatoma SMMC-7721 cells via
a ROS/JNK-dependent mitochondrial pathway. Cancer Lett.
298:222–230. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhou J, Wu J, Chen X, Fortenbery N,
Eksioglu E, Kodumudi KN, Pk EB, Dong J, Djeu JY and Wei S: Icariin
and its derivative, ICT, exert anti-inflammatory, anti-tumor
effects, and modulate myeloid derived suppressive cells (MDSCs)
functions. Int Immunopharmacol. 11:890–898. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang Z, Zhang X, Wang H, Qi L and Lou Y:
Neuroprotective effects of icaritin against beta amyloid-induced
neurotoxicity in primary cultured rat neuronal cells via
estrogen-dependent pathway. Neuroscience. 145:911–922. 2007.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang L, Lu D, Guo J, Meng X, Zhang G and
Wang F: Icariin from Epimedium brevicornum Maxim promotes the
biosynthesis of estrogen by aromatase (CYP19). J Ethnopharmacol.
145:715–721. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Qin L, Han T, Zhang Q, Cao D, Nian H,
Rahman K and Zheng H: Antiosteoporotic chemical constituents from
Er-Xian Decoction, a traditional Chinese herbal formula. J
Ethnopharmacol. 118:271–279. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang G, Qin L, Sheng H, Yeung KW, Yeung
HY, Cheung WH, Griffith J, Chan CW, Lee KM and Leung KS:
Epimedium-derived phytoestrogen exert beneficial effect on
preventing steroid-associated osteonecrosis in rabbits with
inhibition of both thrombosis and lipid-deposition. Bone.
40:685–692. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ye HY and Lou YJ: Estrogenic effects of
two derivatives of icariin on human breast cancer MCF-7 cells.
Phytomedicine. 12:735–741. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yamaguchi M and Gao YH: Inhibitory effect
of genistein on bone resorption in tissue culture. Biochem
Pharmacol. 55:71–76. 1998. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen KM, Ge BF, Liu XY, Ma PH, Lu MB, Bai
MH and Wang Y: Icariin inhibits the osteoclast formation induced by
RANKL and macrophage-colony stimulating factor in mouse bone marrow
culture. Pharmazie. 62:388–391. 2007.PubMed/NCBI
|
16
|
Huang J, Yuan L, Wang X, Zhang TL and Wang
K: Icaritin and its glycosides enhance osteoblastic, but suppress
osteoclastic, differentiation and activity in vitro. Life Sci.
81:832–840. 2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Titorencu I, Pruna V, Jinga VV and
Simionescu M: Osteoblast ontogeny and implications for bone
pathology: An overview. Cell Tissue Res. 355:23–33. 2014.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Grogan SP, Olee T, Hiraoka K and Lotz MK:
Repression of chondrogenesis through binding of notch signaling
proteins HES-1 and HEY-1 to N-box domains in the COL2A1 enhancer
site. Arthritis Rheum. 58:2754–2763. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nobta M, Tsukazaki T, Shibata Y, Xin C,
Moriishi T, Sakano S, Shindo H and Yamaguchi A: Critical regulation
of bone morphogenetic protein-induced osteoblastic differentiation
by Delta1/Jagged1 activated Notch1 signaling. J Biol Chem.
280:15842–15848. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Garcés C, Ruiz-Hidalgo MJ, de Mora J Font,
Park C, Miele L, Goldstein J, Bonvini E, Porrás A and Laborda J:
Notch-1 controls the expression of fatty acid-activated
transcription factors and is required for adipogenesis. J Biol
Chem. 272:29729–29734. 1997. View Article : Google Scholar : PubMed/NCBI
|
21
|
Akune T, Ohba S, Kamekura S, Yamaguchi M,
Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, et
al: PPARgamma insufficiency enhances osteogenesis through
osteoblast formation from bone marrow progenitors. J Clin Invest.
113:846–855. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Teitelbaum SL: Osteoclasts: What do they
do and how do they do it? Am J Pathol. 170:427–435. 2007.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Devlin H and Ferguson MW: Compositional
changes in rat femur following ovariectomy. Acta Anat (Baslel).
136:38–41. 1989. View Article : Google Scholar
|
24
|
Kalu DN: Evaluation of the pathogenesis of
skeletal changes in ovariectomized rats. Endocrinology.
115:507–512. 1984. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-tie quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Mok SK, Chen WF, Lai WP, Leung PC, Wang
XL, Yao XS and Wong MS: Icariin protects against bone loss induced
by oestrogen deficiency and activates oestrogen receptor-dependent
osteoblastic functions in UMR 106 cells. Br J Pharmacol.
159:939–949. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nan H, Ma MH, Nan SS and Xu LL:
Antiosteoporotic activity of icariin in ovariectomized rats.
Phytomedicine. 16:320–326. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Feng R, Feng L, Yuan Z, Wang D, Wang F,
Tan B, Han S, Li T, Li D and Han Y: Icariin protects against
glucocorticoid-induced osteoporosis in vitro and prevents
glucocorticoid-induced osteocyte apoptosis in vivo. Cell Biochem
Biophys. 67:189–197. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ma HP, Ming LG, Ge BF, Zhai YK, Song P,
Xian CJ and Chen KM: Icarrin is more potent than genistein in
promoting osteoblast differentiation and mineralization in vitro. J
Cell Biochem. 112:916–923. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhao J, Ohba S, Shinkai M, Chung UI and
Nagamune T: Icariin induces osteogenic differentiation in vitro in
a BMP- and Runx2-dependent manner. Biochem Biophys Res Commun.
369:444–448. 2008. View Article : Google Scholar : PubMed/NCBI
|
31
|
Vladyslav V Povoroznyuk, Nikonenko Pavel I
and Grygoryeva Natalija V: Bone. 42:1:S83. 2008. View Article : Google Scholar
|
32
|
Peng S, Zhang G, He Y, Wang X, Leung P,
Leung K and Qin L: Epimedium-derived flavonoids promote
osteoblastogenesis and suppress adipogenesis in bone marrow stromal
cells while exerting an anabolic effect on osteoporotic bone. Bone.
45:534–544. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Campa VM, Gutiérrez-Lanza R, Cerignoli F,
Díaz-Trelles R, Nelson B, Tsuji T, Barcova M, Jiang W and Mercola
M: Notch activates cell cycle reentry and progression in quiescent
cardiomyocytes. J Cell Biol. 183:129–141. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Augello A and De Bari C: The regulation of
differentiation in mesenchymal stem cells. Hum Gene Ther.
21:1226–1238. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Huang Y, Yang X, Wu Y, Jing W, Cai X, Tang
W, Liu L, Liu Y, Grotkau BE and Lin Y: Gamma-secretase inhibitor
induces adipogenesis of adipose-derived stem cells by regulation of
Notch and PPAR-gamma. Cell Prolif. 43:147–156. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bai S, Kopan R, Zou W, Hilton MJ, Ong CT,
Long F, Ross FP and Teitelbaum SL: NOTCH1 regulates
osteoclastogenesis directly in osteoclast precursors and indirectly
via osteoblast lineage cells. J Biol Chem. 283:6509–6518. 2008.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Fiúza UM and Arias AM: Cell and molecular
biology of Notch. J Endocrinol. 194:459–474. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Weinmaster G: Notch signal transduction: A
real rip and more. Curr Opin Genet Dev. 10:363–369. 2000.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Zanotti S, Smerdel-Ramoya A, Stadmeyer L,
Durant D, Radtke F and Canalis E: Notch inhibits osteoblast
differentiation and causes osteopenia. Endocrinology.
149:3890–3899. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ugarte F, Ryser M, Thieme S, Fierro FA,
Navratiel K, Bornhäuser M and Brenner S: Notch signaling enhances
osteogenic differentiation while inhibiting adipogenesis in primary
human bone marrow stromal cells. Exp Hematol. 37:867–875.e1. 2009.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Kim HL, Sim JE, Choi HM, Choi IY, Jeong
MY, Park J, Jung Y, Youn DH, Cho JH, Kim JH, et al: The AMPK
pathway mediates an anti-adipogenic effect of fruits of Hovenia
dulcis Thunb. Food Funct. 5:2961–2968. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lewis J, Hanisch A and Holder M: Notch
signaling, the segmentation clock, and the patterning of vertebrate
somites. J Biol. 8:442009. View Article : Google Scholar : PubMed/NCBI
|