1
|
Xue L, Zha L, Chen Q, Liang YJ, Li KR,
Zhou Z, Guan JL, Qin H and Li YP: Randomized controlled trials of
proximal femoral nail antirotation in lateral decubitus and supine
position on treatment of intertrochanteric fractures. Sci World J.
2013:2760152013. View Article : Google Scholar
|
2
|
Foss NB and Kehlet H: Hidden blood loss
after surgery for hip fracture. J Bone Joint Surg Br. 88:1053–1059.
2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yang YH, Wang YR, Jiang SD and Jiang LS:
Proximal femoral nail antirotation and third-generation Gamma nail:
which is a better device for the treatment of intertrochanteric
fractures? Singapore Med J. 54:446–450. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ostrum RF, P III Tornetta, Watson JT,
Christiano A and Vafek E: Ipsilateral proximal femur and shaft
fractures treated with hip screws and a reamed retrograde
intramedullary nail. Clin Orthop Relat Res. 472:2751–2758. 2014.
View Article : Google Scholar : PubMed/NCBI
|
5
|
McCormack R, Panagiotopolous K, Buckley R,
Penner M, Perey B, Pate G, Goetz T and Piper M: A multicentre,
prospective, randomised comparison of the sliding hip screw with
the Medoff sliding screw and side plate for unstable
intertrochanteric hip fractures. Injury. 44:1904–1909. 2013.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Watts NB: Fundamentals and pitfalls of
bone densitometry using dual-energy X-ray absorptiometry (DXA).
Osteoporos Int. 15:847–854. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tauchmanovà L, Nuzzo V, Del Puente A,
Fonderico F, Esposito-Del Puente A, Padulla S, Rossi A, Bifulco G,
Lupoli G and Lombardi G: Reduced bone mass detected by bone
quantitative ultrasonometry and DEXA in pre- and postmenopausal
women with endogenous subclinical hyperthyroidism. Maturitas.
48:299–306. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shim VB, Pitto RP and Anderson IA:
Quantitative CT with finite element analysis: towards a predictive
tool for bone remodelling around an uncemented tapered stem. Int
Orthop. 36:1363–1369. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ramamurthi K, Ahmad O, Engelke K, Taylor
RH, Zhu K, Gustafsson S, Prince RL and Wilson KE: An in vivo
comparison of hip structure analysis (HSA) with measurements
obtained by QCT. Osteoporos Int. 23:543–551. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kalkwarf HJ, Laor T and Bean JA: Fracture
risk in children with a forearm injury is associated with
volumetric bone density and cortical area (by peripheral QCT) and
areal bone density (by DXA). Osteoporos Int. 22:607–616. 2011.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Ito M, Wakao N, Hida T, Matsui Y, Abe Y,
Aoyagi K, Uetani M and Harada A: Analysis of hip geometry by
clinical CT for the assessment of hip fracture risk in elderly
Japanese women. Bone. 46:453–457. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Born C, Karich B, Bauer C, von Oldenburg G
and Augat P: Hip screw migration testing: first results for hip
screws and helical blades utilizing a new oscillating test method.
J Orthop Res. 29:760–766. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xu Y, Geng D, Yang H, Wang X and Zhu G:
Treatment of unstable proximal femoral fractures: comparison of the
proximal femoral nail antirotation and gamma nail 3. Orthopedics.
33:4732010.PubMed/NCBI
|
14
|
O'Malley NT, Deeb AP, Bingham KW and Kates
SL: Outcome of the dynamic helical hip screw system for
intertrochanteric hip fractures in the elderly patients. Geriatr
Orthop Surg Rehabil. 3:68–73. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Frei HC, Hotz T, Cadosch D, Rudin M and
Käch K: Central head perforation, or ‘cut through,’ caused by the
helical blade of the proximal femoral nail antirotation. J Orthop
Trauma. 26:e102–e107. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Goffin J, Pankaj P and Simpson A: The
importance of lag screw position for the stabilization of
trochanteric fractures with a sliding hip screw: a subject-specific
finite element study. J Orthop Res. 31:596–600. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kuzyk PR, Zdero R, Shah S, Olsen M,
Waddell JP and Schemitsch EH: Femoral head lag screw position for
cephalomedullary nails: a biomechanical analysis. J Orthop Trauma.
26:414–421. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Schwarzkopf R, Takemoto RC, Kummer FJ and
Egol KA: Helical blade vs telescoping lag screw for
intertrochanteric fracture fixation. Am J Orthop (Belle Mead NJ).
40:452–456. 2011.PubMed/NCBI
|
19
|
Geller JA, Saifi C, Morrison TA and
Macaulay W: Tip-apex distance of intramedullary devices as a
predictor of cut-out failure in the treatment of peritrochanteric
elderly hip fractures. Int Orthop. 34:719–722. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Laohapoonrungsee A, Arpornchayanon O and
Phornputkul C: Two-hole side-plate DHS in the treatment of
intertrochanteric fracture: Results and complications. Injury.
36:1355–1360. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Verettas DA, Ifantidis P, Chatzipapas CN,
Drosos GI, Xarchas KC, Chloropoulou P, Kazakos KI, Trypsianis G and
Ververidis A: Systematic effects of surgical treatment of hip
fractures: gliding screw-plating vs intramedullary nailing. Injury.
41:279–284. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Keyak JH, Sigurdsson S, Karlsdottir G,
Oskarsdottir D, Sigmarsdottir A, Zhao S, Kornak J, Harris TB,
Sigurdsson G, Jonsson BY, et al: Male-female differences in the
association between incident hip fracture and proximal femoral
strength: a finite element analysis study. Bone. 48:1239–1245.
2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Marshall LM, Zmuda JM, Chan BK,
Barrett-Connor E, Cauley JA, Ensrud KE, Lang TF and Orwoll ES:
Osteoporotic Fractures in Men (MrOS) Research Group: Race and
ethnic variation in proximal femur structure and BMD among older
men. J Bone Miner Res. 23:121–130. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Nicks KM, Amin S, LJ III Melton, Atkinson
EJ, McCready LK, Riggs BL, Engelke K and Khosla S:
Three-dimensional structural analysis of the proximal femur in an
age-stratified sample of women. Bone. 55:179–188. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ohnaru K, Sone T, Tanaka K, Akagi K, Ju
YI, Choi HJ, Tomomitsu T and Fukunaga M: Hip structural analysis: a
comparison of DXA with CT in postmenopausal Japanese women.
Springerplus. 2:3312013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Vochteloo AJ, van der Burg BL Borger,
Röling MA, van Leeuwen DH, van den Berg P, Niggebrugge AH, de Vries
MR, Tuinebreijer WE, Bloem RM, Nelissen RG, et al: Contralateral
hip fractures and other osteoporosis-related fractures in hip
fracture patients: incidence and risk factors. An observational
cohort study of 1,229 patients. Arch Orthop Trauma Surg.
132:1191–1197. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lau EM, Suriwongpaisal P, Lee JK, Das De
S, Festin MR, Saw SM, Khir A, Torralba T, Sham A and Sambrook P:
Risk factors for hip fracture in Asian men and women: the Asian
osteoporosis study. J Bone Miner Res. 16:572–580. 2001. View Article : Google Scholar : PubMed/NCBI
|
28
|
Herman A, Landau Y, Gutman G, Ougortsin V,
Chechick A and Shazar N: Radiological evaluation of
intertrochanteric fracture fixation by the proximal femoral nail.
Injury. 43:856–863. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Nishiyama KK, Ito M, Harada A and Boyd SK:
Classification of women with and without hip fracture based on
quantitative computed tomography and finite element analysis.
Osteoporos Int. 25:619–626. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Khoo BC, Brown K, Zhu K, Pollock M, Wilson
KE, Price RI and Prince RL: Differences in structural geometrical
outcomes at the neck of the proximal femur using two-dimensional
DXA-derived projection (APEX) and three-dimensional QCT-derived
(BIT QCT) techniques. Osteoporos Int. 23:1393–1398. 2012.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Maeda Y, Sugano N, Saito M and Yonenobu K:
Comparison of femoral morphology and bone mineral density between
femoral neck fractures and trochanteric fractures. Clin Orthop
Relat Res. 469:884–889. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Walker MD, Saeed I, McMahon DJ, Udesky J,
Liu G, Lang T and Bilezikian JP: Volumetric bone mineral density at
the spine and hip in Chinese American and White women. Osteoporos
Int. 23:2499–2506. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu XS, Cohen A, Shane E, Yin PT, Stein
EM, Rogers H, Kokolus SL, McMahon DJ, Lappe JM, Recker RR, et al:
Bone density, geometry, microstructure, and stiffness:
relationships between peripheral and central skeletal sites
assessed by DXA, HR-pQCT, and cQCT in premenopausal women. J Bone
Miner Res. 25:2229–2238. 2010. View
Article : Google Scholar : PubMed/NCBI
|