1
|
Nag AC: Study of non-muscle cells of the
adult mammalian heart: a fine structural analysis and distribution.
Cytobios. 28:41–61. 1980.PubMed/NCBI
|
2
|
Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT,
D'Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA,
et al: Revisiting cardiac cellular composition. Circ Res.
118:400–409. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Souders CA, Bowers SL and Baudino TA:
Cardiac fibroblast: the renaissance cell. Circ Res. 105:1164–1176.
2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Moore-Morris T, Cattaneo P, Puceat M and
Evans SM: Origins of cardiac fibroblasts. J Mol Cell Cardiol.
91:1–5. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hinz B, Phan SH, Thannickal VJ, Galli A,
Bochaton-Piallat ML and Gabbiani G: The myofibroblast: one
function, multiple origins. Am J Pathol. 170:1807–1816. 2007.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Leask A: Potential therapeutic targets for
cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF,
partners in fibroblast activation. Circ Res. 106:1675–1680. 2010.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Leask A: Targeting the TGFbeta,
endothelin-1 and CCN2 axis to combat fibrosis in scleroderma. Cell
Signal. 20:1409–1414. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Euler G: Good and bad sides of
TGFβ-signaling in myocardial infarction. Front Physiol. 6:662015.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Kane CJ, Hebda PA, Mansbridge JN and
Hanawalt PC: Direct evidence for spatial and temporal regulation of
transforming growth factor beta 1 expression during cutaneous wound
healing. J Cell Physiol. 148:157–173. 1991. View Article : Google Scholar : PubMed/NCBI
|
10
|
Massagué J: TGF-beta signal transduction.
Annu Rev Biochem. 67:753–791. 1998. View Article : Google Scholar : PubMed/NCBI
|
11
|
Edgley AJ, Krum H and Kelly DJ: Targeting
fibrosis for the treatment of heart failure: a role for
transforming growth factor-β. Cardiovasc Ther. 30:e30–e40. 2012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Schneiders D, Heger J, Best P, Piper H
Michael and Taimor G: SMAD proteins are involved in apoptosis
induction in ventricular cardiomyocytes. Cardiovasc Res. 67:87–96.
2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Huntgeburth M, Tiemann K, Shahverdyan R,
Schlüter KD, Schreckenberg R, Gross ML, Mödersheim S, Caglayan E,
Müller-Ehmsen J, Ghanem A, et al: Transforming growth factor
β1 oppositely regulates the hypertrophic and contractile
response to β-adrenergic stimulation in the heart. PLoS One.
6:e266282011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Vilahur G, Juan-Babot O, Peña E, Oñate B,
Casaní L and Badimon L: Molecular and cellular mechanisms involved
in cardiac remodeling after acute myocardial infarction. J Mol Cell
Cardiol. 50:522–533. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Talasaz AH, Khalili H, Jenab Y, Salarifar
M, Broumand MA and Darabi F: N-Acetylcysteine effects on
transforming growth factor-β and tumor necrosis factor-α serum
levels as pro-fibrotic and inflammatory biomarkers in patients
following ST-segment elevation myocardial infarction. Drugs R D.
13:199–205. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Shinde AV and Frangogiannis NG:
Fibroblasts in myocardial infarction: a role in inflammation and
repair. J Mol Cell Cardiol. 70:74–82. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Cordeiro MF, Mead A, Ali RR, Alexander RA,
Murray S, Chen C, York-Defalco C, Dean NM, Schultz GS and Khaw PT:
Novel antisense oligonucleotides targeting TGF-beta inhibit in vivo
scarring and improve surgical outcome. Gene Ther. 10:59–71. 2003.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Yamauchi Y, Kohyama T, Takizawa H,
Kamitani S, Desaki M, Takami K, Kawasaki S, Kato J and Nagase T:
Tumor necrosis factor-alpha enhances both epithelial-mesenchymal
transition and cell contraction induced in A549 human alveolar
epithelial cells by transforming growth factor-beta1. Exp Lung Res.
36:12–24. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Maleszewska M, Moonen JR, Huijkman N, van
de Sluis B, Krenning G and Harmsen MC: IL-1β and TGFβ2
synergistically induce endothelial to mesenchymal transition in an
NFκB-dependent manner. Immunobiology. 218:443–454. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zeisberg EM, Tarnavski O, Zeisberg M,
Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT,
Roberts AB, et al: Endothelial-to-mesenchymal transition
contributes to cardiac fibrosis. Nat Med. 13:952–961. 2007.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Wrana JL, Attisano L, Wieser R, Ventura F
and Massagué J: Mechanism of activation of the TGF-beta receptor.
Nature. 370:341–347. 1994. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang Y, Feng X, We R and Derynck R:
Receptor-associated Mad homologues synergize as effectors of the
TGF-beta response. Nature. 383:168–172. 1996. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wharton K and Derynck R: TGFbeta family
signaling: novel insights in development and disease. Development.
136:3691–3697. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cunnington RH, Nazari M and Dixon IM:
c-Ski, Smurf2, and Arkadia as regulators of TGF-beta signaling: new
targets for managing myofibroblast function and cardiac fibrosis.
Can J Physiol Pharmacol. 87:764–772. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wrana JL: Regulation of Smad activity.
Cell. 100:189–192. 2000. View Article : Google Scholar : PubMed/NCBI
|
26
|
Whitman M: Signal transduction. Feedback
from inhibitory SMADs. Nature. 389:549–551. 1997. View Article : Google Scholar : PubMed/NCBI
|
27
|
Dobaczewski M, Chen W and Frangogiannis
NG: Transforming growth factor (TGF)-β signaling in cardiac
remodeling. J Mol Cell Cardiol. 51:600–606. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Blahna MT and Hata A: Smad-mediated
regulation of microRNA biosynthesis. FEBS Lett. 586:1906–1912.
2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Flanders KC, Sullivan CD, Fujii M, Sowers
A, Anzano MA, Arabshahi A, Major C, Deng C, Russo A, Mitchell JB,
et al: Mice lacking Smad3 are protected against cutaneous injury
induced by ionizing radiation. Am J Pathol. 160:1057–1068. 2002.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Bujak M, Ren G, Kweon HJ, Dobaczewski M,
Reddy A, Taffet G, Wang XF and Frangogiannis NG: Essential role of
Smad3 in infarct healing and in the pathogenesis of cardiac
remodeling. Circulation. 116:2127–2138. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yang YC, Piek E, Zavadil J, Liang D, Xie
D, Heyer J, Pavlidis P, Kucherlapati R, Roberts AB and Böttinger
EP: Hierarchical model of gene regulation by transforming growth
factor beta. Proc Natl Acad Sci USA. 100:10269–10274. 2003.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Verrecchia F, Chu ML and Mauviel A:
Identification of novel TGF-beta/Smad gene targets in dermal
fibroblasts using a combined cDNA microarray/promoter
transactivation approach. J Biol Chem. 276:17058–17062. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Santander C and Brandan E: Betaglycan
induces TGF-beta signaling in a ligand-independent manner, through
activation of the p38 pathway. Cell Signal. 18:1482–1491. 2006.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Shi-wen X, Parapuram SK, Pala D, Chen Y,
Carter DE, Eastwood M, Denton CP, Abraham DJ and Leask A:
Requirement of transforming growth factor beta-activated kinase 1
for transforming growth factor beta-induced alpha-smooth muscle
actin expression and extracellular matrix contraction in
fibroblasts. Arthritis Rheum. 60:234–241. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang J, Huang W, Xu R, Nie Y, Cao X, Meng
J, Xu X, Hu S and Zheng Z: MicroRNA-24 regulates cardiac fibrosis
after myocardial infarction. J Cell Mol Med. 16:2150–2160. 2012.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Guo C, Deng Y, Liu J and Qian L:
Cardiomyocyte-specific role of miR-24 in promoting cell survival. J
Cell Mol Med. 19:103–112. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhou Y, Deng L, Zhao D, Chen L, Yao Z, Guo
X, Liu X, Lv L, Leng B, Xu W, et al: MicroRNA-503 promotes
angiotensin II-induced cardiac fibrosis by targeting Apelin-13. J
Cell Mol Med. 20:495–505. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhao X, Wang K, Liao Y, Zeng Q, Li Y, Hu
F, Liu Y, Meng K, Qian C, Zhang Q, et al: MicroRNA-101a inhibits
cardiac fibrosis induced by hypoxia via targeting TGFβRI on cardiac
fibroblasts. Cell Physiol Biochem. 35:213–226. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang B, Zhou M, Li C, Zhou J, Li H, Zhu
D, Wang Z, Chen A and Zhao Q: MicroRNA-92a inhibition attenuates
hypoxia/reoxygenation-induced myocardiocyte apoptosis by targeting
Smad7. PLoS One. 9:e1002982014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zou M, Wang F, Gao R, Wu J, Ou Y, Chen X,
Wang T, Zhou X, Zhu W, Li P, et al: Autophagy inhibition of
hsa-miR-19a-3p/19b-3p by targeting TGF-β R II during TGF-β1-induced
fibrogenesis in human cardiac fibroblasts. Sci Rep. 6:247472016.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Tijsen AJ, van der Made I, van den
Hoogenhof MM, Wijnen WJ, van Deel ED, de Groot NE, Alekseev S,
Fluiter K, Schroen B, Goumans MJ, et al: The microRNA-15 family
inhibits the TGFβ-pathway in the heart. Cardiovasc Res. 104:61–71.
2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Heger J, Warga B, Meyering B, Abdallah Y,
Schlüter KD, Piper HM and Euler G: TGFβ receptor activation
enhances cardiac apoptosis via SMAD activation and concomitant NO
release. J Cell Physiol. 226:2683–2690. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ebelt H, Hillebrand I, Arlt S, Zhang Y,
Kostin S, Neuhaus H, Müller-Werdan U, Schwarz E, Werdan K and Braun
T: Treatment with bone morphogenetic protein 2 limits infarct size
after myocardial infarction in mice. Shock. 39:353–360. 2013.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Zeisberg M, Hanai J, Sugimoto H, Mammoto
T, Charytan D, Strutz F and Kalluri R: BMP-7 counteracts
TGF-beta1-induced epithelial-to-mesenchymal transition and reverses
chronic renal injury. Nat Med. 9:964–968. 2003. View Article : Google Scholar : PubMed/NCBI
|
45
|
Dobaczewski M, Bujak M, Li N,
Gonzalez-Quesada C, Mendoza LH, Wang XF and Frangogiannis NG: Smad3
signaling critically regulates fibroblast phenotype and function in
healing myocardial infarction. Circ Res. 107:418–428. 2010.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Biernacka A, Cavalera M, Wang J, Russo I,
Shinde A, Kong P, Gonzalez-Quesada C, Rai V, Dobaczewski M, Lee DW,
et al: Smad3 signaling promotes fibrosis while preserving cardiac
and aortic geometry in obese diabetic mice. Circ Heart Fail.
8:788–798. 2015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Tan SM, Zhang Y, Connelly KA, Gilbert RE
and Kelly DJ: Targeted inhibition of activin receptor-like kinase 5
signaling attenuates cardiac dysfunction following myocardial
infarction. Am J Physiol Heart Circ Physiol. 298:H1415–H1425. 2010.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Engebretsen KV, Skårdal K, Bjørnstad S,
Marstein HS, Skrbic B, Sjaastad I, Christensen G, Bjørnstad JL and
Tønnessen T: Attenuated development of cardiac fibrosis in left
ventricular pressure overload by SM16, an orally active inhibitor
of ALK5. J Mol Cell Cardiol. 76:148–157. 2014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Anderton MJ, Mellor HR, Bell A, Sadler C,
Pass M, Powell S, Steele SJ, Roberts RR and Heier A: Induction of
heart valve lesions by small-molecule ALK5 inhibitors. Toxicol
Pathol. 39:916–924. 2011. View Article : Google Scholar : PubMed/NCBI
|
50
|
Wei LH, Huang XR, Zhang Y, Li YQ, Chen HY,
Yan BP, Yu CM and Lan HY: Smad7 inhibits angiotensin II-induced
hypertensive cardiac remodelling. Cardiovasc Res. 99:665–673. 2013.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Matsumoto-Ida M, Takimoto Y, Aoyama T,
Akao M, Takeda T and Kita T: Activation of TGF-beta1-TAK1-p38 MAPK
pathway in spared cardiomyocytes is involved in left ventricular
remodeling after myocardial infarction in rats. Am J Physiol Heart
Circ Physiol. 290:H709–H715. 2006. View Article : Google Scholar : PubMed/NCBI
|