1
|
Gottrup F and Apelqvist J: The challenge
of using randomized trials in wound healing. Br J Surg. 97:303–304.
2010. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Leaper DJ, Harding KJ and Harding KG: The
future of wound healingWounds: Biology and Management. Leaper DJ
and Harding KJ: Oxford University Press; Oxford: pp. 1911998
|
3
|
Posnett J and Franks PJ: The costs of skin
breakdown and ulceration in the UKSkin Breakdown: The Silent
Epidemic. Pownall M: Hull: Smith & Nephew Foundation; pp. 6–12.
2007
|
4
|
Abstract of Statistics-Quarter.
3:2011.
|
5
|
Menke NB, Ward KR, Witten TM, Bonchev DG
and Diegelmann RF: Impaired wound healing. Clin Dermatol. 25:19–25.
2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bucalo B, Eaglstein WH and Falanga V:
Inhibition of cell proliferation by chronic wound fluid. Wound
Repair Regen. 1:181–186. 1993. View Article : Google Scholar : PubMed/NCBI
|
7
|
Harding KG, Morris HL and Patel GK:
Science, medicine and the future: Healing chronic wounds. BMJ.
324:160–163. 2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Vaalamo M, Leivo T and Saarialho-Kere U:
Differential expression of tissue inhibitors of metalloproteinases
(TIMP-1, −2, −3 and −4) in normal and aberrant wound healing. Hum
Pathol. 30:795–802. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ravanti L and Kähäri VM: Matrix
metalloproteinases in wound repair (review). Int J Mol Med.
6:391–407. 2000.PubMed/NCBI
|
10
|
Brandner JM, Zacheja S, Houdek P, Moll I
and Lobmann R: Expression of matrix metalloproteinases, cytokines,
and connexins in diabetic and nondiabetic human keratinocytes
before and after transplantation into an ex vivo wound-healing
model. Diabetes Care. 31:114–120. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Telgenhoff D and Shroot B: Cellular
senescence mechanisms in chronic wound healing. Cell Death Differ.
12:695–698. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Herrick SE, Sloan P, McGurk M, Freak L,
McCollum CN and Ferguson MW: Sequential changes in histologic
pattern and extracellular matrix deposition during the healing of
chronic venous ulcers. Am J Pathol. 141:1085–1095. 1992.PubMed/NCBI
|
13
|
Brem H, Stojadinovic O, Diegelmann RF,
Entero H, Lee B, Pastar I, Golinko M, Rosenberg H and Tomic-Canic
M: Molecular markers in patients with chronic wounds to guide
surgical debridement. Mol Med. 13:30–39. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tomic-Canic M, Ayello EA, Stojadinovic O,
Golinko MS and Brem H: Using gene transcription patterns (bar
coding scans) to guide wound debridement and healing. Adv Skin
Wound Care. 21:487–494. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Charles CA, Tomic-Canic M, Vincek V,
Nassiri M, Stojadinovic O, Eaglstein WH and Kirsner RS: A gene
signature of nonhealing venous ulcers: Potential diagnostic
markers. J Am Acad Dermatol. 59:758–771. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Madsen P, Rasmussen HH, Leffers H, Honoré
B, Dejgaard K, Olsen E, Kiil J, Walbum E, Andersen AH, Basse B, et
al: Molecular cloning, occurrence, and expression of a novel
partially secreted protein ‘psoriasin’ that is highly up-regulated
in psoriatic skin. J Invest Dermatol. 97:701–712. 1991. View Article : Google Scholar : PubMed/NCBI
|
17
|
Celis JE, Cruger D, Kiil J, Lauridsen JB,
Ratz G, Basse B and Celis A: Identification of a group of proteins
that are strongly up-regulated in total epidermal keratinocytes
from psoriatic skin. FEBS Lett. 262:159–164. 1990. View Article : Google Scholar : PubMed/NCBI
|
18
|
Watson PH, Leygue ER and Murphy LC:
Psoriasin (S100A7). Int J Biochem Cell Biol. 30:567–571. 1998.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Schäfer BW and Heizmann CW: The S100
family of EF-hand calcium-binding proteins: Functions and
pathology. Trends Biochem Sci. 21:134–140. 1996. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wicki R, Schafer BW, Erne P and Heizmann
CW: Characterization of the human and mouse cDNAs coding for
S100A13, a new member of the S100 protein family. Biochem Biophys
Res Commun. 227:594–599. 1996. View Article : Google Scholar : PubMed/NCBI
|
21
|
Børglum AD, Flint T, Madsen P, Celis JE
and Kruse TA: Refined mapping of the psoriasin gene S100A7 to
chromosome 1cen-q21. Hum Genet. 96:592–596. 1995. View Article : Google Scholar : PubMed/NCBI
|
22
|
Heizmann CW and Hunziker W: Intracellular
calcium-binding proteins: More sites than insights. Trends Biochem
Sci. 16:98–103. 1991. View Article : Google Scholar : PubMed/NCBI
|
23
|
Algermissen B, Sitzmann J, LeMotte P and
Czarnetzki B: Differential expression of CRABP II, psoriasin and
cytokeratin 1 mRNA in human skin diseases. Arch Dermatol Res.
288:426–430. 1996. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jinquan T, Vorum H, Larsen CG, Madsen P,
Rasmussen HH, Gesser B, Etzerodt M, Honoré B, Celis JE and
Thestrup-Pedersen K: Psoriasin: A novel chemotactic protein. J
Invest Dermatol. 107:5–10. 1996. View Article : Google Scholar : PubMed/NCBI
|
25
|
Alowami S, Qing G, Emberley E, Snell L and
Watson PH: Psoriasin (S100A7) expression is altered during skin
tumorigenesis. BMC Dermatol. 3:12003. View Article : Google Scholar : PubMed/NCBI
|
26
|
Enerback C, Porter DA, Seth P, Sgroi D,
Gaudet J, Weremowicz S, Morton CC, Schnitt S, Pitts RL, Stampl J,
et al: Psoriasin expression in mammary epithelial cells in vitro
and in vivo. Cancer Res. 62:43–47. 2002.PubMed/NCBI
|
27
|
Leygue E, Snell L, Hiller T, Dotzlaw H,
Hole K, Murphy LC and Watson PH: Differential expression of
psoriasin messenger RNA between in situ and invasive human breast
carcinoma. Cancer Res. 56:4606–4609. 1996.PubMed/NCBI
|
28
|
Moubayed N, Weichenthal M, Harder J,
Wandel E, Sticherling M and Gläser R: Psoriasin (S100A7) is
significantly up-regulated in human epithelial skin tumours. J
Cancer Res Clin Oncol. 133:253–261. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Al-Haddad S, Zhang Z, Leygue E, Snell L,
Huang A, Niu Y, Hiller-Hitchcock T, Hole K, Murphy LC and Watson
PH: Psoriasin (S100A7) expression and invasive breast cancer. Am J
Pathol. 155:2057–2066. 1999. View Article : Google Scholar : PubMed/NCBI
|
30
|
Carlsson H, Yhr M, Petersson S, Collins N,
Polyak K and Enerbäck C: Psoriasin (S100A7) and calgranulin-B
(S100A9) induction is dependent on reactive oxygen species and is
downregulated by Bcl-2 and antioxidants. Cancer Biol Ther.
4:998–1005. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Emberley ED, Alowami S, Snell L, Murphy LC
and Watson PH: S100A7 (psoriasin) expression is associated with
aggressive features and alteration of Jab1 in ductal carcinoma in
situ of the breast. Breast Cancer Res. 6:R308–R315. 2004.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Emberley ED, Niu Y, Leygue E, Tomes L,
Gietz RD, Murphy LC and Watson PH: Psoriasin interacts with Jab1
and influences breast cancer progression. Cancer Res. 63:1954–1961.
2003.PubMed/NCBI
|
33
|
Jiang WG, Watkins G, Douglas-Jones A and
Mansel RE: Psoriasin is aberrantly expressed in human breast cancer
and is related to clinical outcomes. Int J Oncol. 25:81–85.
2004.PubMed/NCBI
|
34
|
Hoffmann HJ, Olsen E, Etzerodt M, Madsen
P, Thøgersen HC, Kruse T and Celis JE: Psoriasin binds calcium and
is upregulated by calcium to levels that resemble those observed in
normal skin. J Invest Dermatol. 103:370–375. 1994. View Article : Google Scholar : PubMed/NCBI
|
35
|
Rasmussen HH, Orntoft TF, Wolf H and Celis
JE: Towards a comprehensive database of proteins from the urine of
patients with bladder cancer. J Urol. 155:2113–2119. 1996.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Eckert RL, Broome AM, Ruse M, Robinson N,
Ryan D and Lee K: S100 proteins in the epidermis. J Invest
Dermatol. 123:23–33. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Mansbridge JN and Knapp AM: Changes in
keratinocyte maturation during wound healing. J Invest Dermatol.
89:253–263. 1987. View Article : Google Scholar : PubMed/NCBI
|
38
|
McKay IA and Leigh IM: Altered
keratinocyte growth and differentiation in psoriasis. Clin
Dermatol. 13:105–114. 1995. View Article : Google Scholar : PubMed/NCBI
|
39
|
Dressel S, Harder J, Cordes J, Wittersheim
M, Meyer-Hoffert U, Sunderkötter C and Gläser R: Differential
expression of antimicrobial peptides in margins of chronic wounds.
Exp Dermatol. 19:628–632. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Conway K, Ruge F, Price P, Harding KG and
Jiang WG: Hepatocyte growth factor regulation: An integral part of
why wounds become chronic. Wound Repair Regen. 15:683–692. 2007.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Conway KP, Price P, Harding KG and Jiang
WG: The role of vascular endothelial growth inhibitor in wound
healing. Int Wound J. 4:55–64. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ye L, Sun PH, Martin TA, Sanders AJ, Mason
MD and Jiang WG: Psoriasin (S100A7) is a positive regulator of
survival and invasion of prostate cancer cells. Urol Oncol.
31:1576–1583. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Jiang WG, Douglas-Jones A and Mansel RE:
Expression of peroxisome-proliferator activated receptor-gamma
(PPARγ) and the PPARgamma co-activator, PGC-1, in human breast
cancer correlates with clinical outcomes. Int J Cancer.
106:752–757. 2003. View Article : Google Scholar : PubMed/NCBI
|
44
|
Jiang WG, Martin TA, Lewis-Russell JM,
Douglas-Jones A, Ye L and Mansel RE: Eplin-alpha expression in
human breast cancer, the impact on cellular migration and clinical
outcome. Mol Cancer. 7:712008. View Article : Google Scholar : PubMed/NCBI
|
45
|
Keese CR, Wegener J, Walker SR and Giaever
I: Electrical wound-healing assay for cells in vitro. Proc Natl
Acad Sci USA. 101:1554–1559. 2004. View Article : Google Scholar : PubMed/NCBI
|
46
|
Bereiter-Hahn J, MatolsyA G and Richards
Sylvia K: Epidermal cell migration and wound repairBiology of the
Integument 2 Vertebrates. Berlin: Springer-Verlag; pp. 444–447.
1986
|
47
|
Patel GK, Wilson CH, Harding KG, Finlay AY
and Bowden PE: Numerous keratinocyte subtypes involved in wound
re-epithelialization. J Invest Dermatol. 126:497–502. 2006.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Ostergaard M, Wolf H, Orntoft TF and Celis
JE: Psoriasin (S100A7): A putative urinary marker for the follow-up
of patients with bladder squamous cell carcinomas. Electrophoresis.
20:349–354. 1999. View Article : Google Scholar : PubMed/NCBI
|
49
|
Miki H, Miura K and Takenawa T: N-WASP, a
novel actin-depolymerizing protein, regulates the cortical
cytoskeletal rearrangement in a PIP2-dependent manner downstream of
tyrosine kinases. EMBO J. 15:5326–5335. 1996.PubMed/NCBI
|
50
|
Fukuoka M, Miki H and Takenawa T:
Identification of N-WASP homologs in human and rat brain. Gene.
196:43–48. 1997. View Article : Google Scholar : PubMed/NCBI
|
51
|
Fukuoka M, Suetsugu S, Miki H, Fukami K,
Endo T and Takenawa T: A novel neural Wiskott-Aldrich syndrome
protein (N-WASP) binding protein, WISH, induces Arp2/3 complex
activation independent of Cdc42. J Cell Biol. 152:471–482. 2001.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Uruno T, Liu J, Li Y, Smith N and Zhan X:
Sequential interaction of actin-related proteins 2 and 3 (Arp2/3)
complex with neural Wiscott-Aldrich syndrome protein (N-WASP) and
cortactin during branched actin filament network formation. J Biol
Chem. 278:26086–26093. 2003. View Article : Google Scholar : PubMed/NCBI
|
53
|
Weaver AM, Heuser JE, Karginov AV, Lee WL,
Parsons JT and Cooper JA: Interaction of cortactin and N-WASp with
Arp2/3 complex. Current Biol. 12:1270–1278. 2002. View Article : Google Scholar
|
54
|
Rohatgi R, Ma L, Miki H, Lopez M,
Kirchhausen T, Takenawa T and Kirschner MW: The interaction between
N-WASP and the Arp2/3 complex links Cdc42-dependent signals to
actin assembly. Cell. 97:221–231. 1999. View Article : Google Scholar : PubMed/NCBI
|
55
|
Martin TA, Pereira G, Watkins G, Mansel RE
and Jiang WG: N-WASP is a putative tumour suppressor in breast
cancer cells, in vitro and in vivo and is associated with clinical
outcome in patients with breast cancer. Clin Exp Metastasis.
25:97–108. 2008. View Article : Google Scholar : PubMed/NCBI
|
56
|
Sanchez AM, Flamini MI, Baldacci C, Goglia
L, Genazzani AR and Simoncini T: Estrogen receptor-alpha promotes
breast cancer cell motility and invasion via focal adhesion kinase
and N-WASP. Mol Endocrinol. 24:2114–2125. 2010. View Article : Google Scholar : PubMed/NCBI
|
57
|
Lefever T, Pedersen E, Basse A, Paus R,
Quondamatteo F, Stanley AC, Langbein L, Wu X, Wehland J, Lommel S
and Brakebusch C: N-WASP is a novel regulator of hair-follicle
cycling that controls antiproliferative TGF{beta} pathways. J Cell
Sci. 123:128–140. 2010. View Article : Google Scholar : PubMed/NCBI
|
58
|
Jiang W and Harding K: Method and kit for
the classification and prognosis of wounds. Journal. 2010.
|
59
|
Reese KA, Reddy S and Rock JA:
Endometriosis in an adolescent population: The Emory experience. J
Pediatr Adolesc Gynecol. 9:125–128. 1996. View Article : Google Scholar : PubMed/NCBI
|
60
|
Riento K and Ridley AJ: Rocks:
Multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol.
4:446–456. 2003. View Article : Google Scholar : PubMed/NCBI
|
61
|
Yasui Y, Amano M, Nagata K, Inagaki N,
Nakamura H, Saya H, Kaibuchi K and Inagaki M: Roles of
Rho-associated kinase in cytokinesis; mutations in Rho-associated
kinase phosphorylation sites impair cytokinetic segregation of
glial filaments. J Cell Biol. 143:1249–1258. 1998. View Article : Google Scholar : PubMed/NCBI
|
62
|
Zhou Z, Meng Y, Asrar S, Todorovski Z and
Jia Z: A critical role of Rho-kinase ROCK2 in the regulation of
spine and synaptic function. Neuropharmacology. 56:81–89. 2009.
View Article : Google Scholar : PubMed/NCBI
|
63
|
Zhao Z and Rivkees SA: Rho-associated
kinases play a role in endocardial cell differentiation and
migration. Dev Biol. 275:183–191. 2004. View Article : Google Scholar : PubMed/NCBI
|
64
|
Morgan-Fisher M, Wewer UM and Yoneda A:
Regulation of ROCK activity in cancer. J Histochem Cytochem.
61:185–198. 2013. View Article : Google Scholar : PubMed/NCBI
|
65
|
Lane J, Martin TA, Watkins G, Mansel RE
and Jiang WG: The expression and prognostic value of ROCK I and
ROCK II and their role in human breast cancer. Int J Oncol.
33:585–593. 2008.PubMed/NCBI
|
66
|
McMullan R, Lax S, Robertson VH, Radford
DJ, Broad S, Watt FM, Rowles A, Croft DR, Olson MF and Hotchin NA:
Keratinocyte differentiation is regulated by the Rho and ROCK
signaling pathway. Curr Biol. 13:2185–2189. 2003. View Article : Google Scholar : PubMed/NCBI
|
67
|
Hahmann C and Schroeter T: Rho-kinase
inhibitors as therapeutics: From pan inhibition to isoform
selectivity. Cell Mol Life Sci. 67:171–177. 2010. View Article : Google Scholar : PubMed/NCBI
|
68
|
Okumura N, Koizumi N, Ueno M, Sakamoto Y,
Takahashi H, Hirata K, Torii R, Hamuro J and Kinoshita S:
Enhancement of corneal endothelium wound healing by Rho-associated
kinase (ROCK) inhibitor eye drops. Br J Ophthalmol. 95:1006–1009.
2011. View Article : Google Scholar : PubMed/NCBI
|
69
|
Brami-Cherrier K, Gervasi N, Arsenieva D,
Walkiewicz K, Boutterin MC, Ortega A, Leonard PG, Seantier B, Gasmi
L, Bouceba T, et al: FAK dimerization controls its kinase-dependent
functions at focal adhesions. EMBO J. 33:356–370. 2014. View Article : Google Scholar : PubMed/NCBI
|
70
|
Parsons JT: Focal adhesion kinase: The
first ten years. J Cell Sci. 116:1409–1416. 2003. View Article : Google Scholar : PubMed/NCBI
|
71
|
Schaller MD: Cellular functions of FAK
kinases: Insight into molecular mechanisms and novel functions. J
Cell Sci. 123:1007–1013. 2010. View Article : Google Scholar : PubMed/NCBI
|
72
|
Sulzmaier FJ, Jean C and Schlaepfer DD:
FAK in cancer: Mechanistic findings and clinical applications. Nat
Rev Cancer. 14:598–610. 2014. View Article : Google Scholar : PubMed/NCBI
|
73
|
Parsons JT, Slack-Davis J, Tilghman R and
Roberts WG: Focal adhesion kinase: Targeting adhesion signaling
pathways for therapeutic intervention. Clin Cancer Res. 14:627–632.
2008. View Article : Google Scholar : PubMed/NCBI
|
74
|
Shi Q, Hjelmeland AB, Keir ST, Song L,
Wickman S, Jackson D, Ohmori O, Bigner DD, Friedman HS and Rich JN:
A novel low-molecular weight inhibitor of focal adhesion kinase,
TAE226, inhibits glioma growth. Mol Carcinog. 46:488–496. 2007.
View Article : Google Scholar : PubMed/NCBI
|
75
|
Roberts WG, Ung E, Whalen P, Cooper B,
Hulford C, Autry C, Richter D, Emerson E, Lin J, Kath J, et al:
Antitumor activity and pharmacology of a selective focal adhesion
kinase inhibitor, PF-562,271. Cancer Res. 68:1935–1944. 2008.
View Article : Google Scholar : PubMed/NCBI
|
76
|
Essayem S, Kovacic-Milivojevic B,
Baumbusch C, McDonagh S, Dolganov G, Howerton K, Larocque N, Mauro
T, Ramirez A, Ramos DM, et al: Hair cycle and wound healing in mice
with a keratinocyte-restricted deletion of FAK. Oncogene.
25:1081–1089. 2006. View Article : Google Scholar : PubMed/NCBI
|