1
|
Biadgo B, Melku M, Abebe SM and Abebe M:
Hematological indices and their correlation with fasting blood
glucose level and anthropometric measurements in type 2 diabetes
mellitus patients in Gondar, Northwest Ethiopia. Diabetes Metab
Syndr Obes. 9:91–99. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Budinsky A, Wolfram R, Oguogho A,
Efthimiou Y, Stamatopoulos Y and Sinzinger H: Regular ingestion of
opuntia robusta lowers oxidation injury. Prostaglandins Leukot
Essent Fatty Acids. 65:45–50. 2001. View Article : Google Scholar : PubMed/NCBI
|
3
|
Li Q, Zhou JP and Zhang HB: Research
progresses in anti-diabetic drugs. Progress in Pharmaceutical
Sciences. 37:417–427. 2013.
|
4
|
Lai Yu, Chai Dandan, Niu Rui and Xiaodong
S: Study the mechanism of potentilla discolor Bunge extract on
blood sugar in diabetic rats. Aisa-Pacific Traditional Medicine.
12:17–19. 2016.
|
5
|
Wan Y, Wu J and Wu Q: A review of the
hypoglycemic activity of Siraitia Grosvenorii. Food Research and
Development. 37:188–191. 2016.
|
6
|
Zhang M and Shen Y: Research advances in
pharmacological effects of oleanolic acid in hypoglycemia and
antidiabetic complications. Anti-infection Pharmacy. 12:801–806.
2015.
|
7
|
Ryu GR, Lee MK, Lee E, Ko SH, Ahn YB, Kim
JW, Yoon KH and Song KH: Activation of AMP-activated protein kinase
mediates acute and severe hypoxic injury to pancreatic beta cells.
Biochem Biophys Res Commun. 386:356–362. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Magnoni LJ, Vraskou Y, Palstra AP and
Planas JV: AMP-activated protein kinase plays an important
evolutionary conserved role in the regulation of glucose metabolism
in fish skeletal muscle cells. PLoS One. 7:e312192012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Viollet B, Guigas B, Leclerc J, Hébrard S,
Lantier L, Mounier R, Andreelli F and Foretz M: AMP-activated
protein kinase in the regulation of hepatic energy metabolism: From
physiology to therapeutic perspectives. Acta Physiol (Oxf).
196:81–98. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Koo SH, Flechner L, Qi L, Zhang X,
Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P,
et al: The CREB coactivator TORC2 is a key regulator of fasting
glucose metabolism. Nature. 437:1109–1111. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Shi Y, Han B, Yu X, Qu S and Sui D:
Ginsenoside Rb3 ameliorates myocardial ischemia-reperfusion injury
in rats. Pharm Biol. 49:900–906. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cui J, Jiang L and Xiang H: Ginsenoside
Rb3 exerts antidepressant-like effects in several animal models. J
Psychopharmacol. 26:697–713. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu X, Jiang Y, Yu X, Fu W, Zhang H and
Sui D: Ginsenoside-Rb3 protects the myocardium from
ischemia-reperfusion injury via the inhibition of apoptosis in
rats. Exp Ther Med. 8:1751–1756. 2014.PubMed/NCBI
|
14
|
Wang T, Yu X, Qu S, Xu H, Han B and Sui D:
Effect of ginsenoside Rb3 on myocardial injury and heart function
impairment induced by isoproterenol in rats. Eur J Pharmacol.
636:121–125. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rui L, Yi-Nan Z and Wen-Cong L: Inhibitory
activity of ginsenoside Rb3 on pancreatic lipase. J Xidian Univ.
23:522–525. 2011.
|
16
|
Bu QT, Zhang WY, Chen QC, Zhang CZ, Gong
XJ, Liu WC, Li W and Zheng YN: Anti-diabetic effect of ginsenoside
Rb(3) in alloxan-induced diabetic mice. Med Chem. 8:934–941. 2012.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Meng FL, Su XT and Zheng YN: Effects of
Ginsenoside Rb3 on antihyperglycemia and antioxidation in diabetic
mice. J South Chin Agr Univ. 34:553–557. 2013.
|
18
|
Wei S, Li W, Yu Y, Yao F, A L, Lan X, Guan
F, Zhang M and Chen L: Ginsenoside Compound K suppresses the
hepatic gluconeogenesis via activating adenosine-5′monophosphate
kinase: A study in vitro and in vivo. Life Sci. 139:8–15. 2015.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Lee MS, Hwang JT, Kim SH, Yoon S, Kim MS,
Yang HJ and Kwon DY: Gimenoside Rc, an active component of Panax
ginseng, stimulates glucose uptake in C2C12 myotubes through an
AMPK-dependent mechanism. J Ethnopharmacol. 127:771–776. 2010.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Jin J, Mullen TD, Hou Q, Bielawski J,
Bielawska A, Zhang X, Obeid LM, Hannun YA and Hsu YT: AMPK
inhibitor Compound C stimulates ceramide production and promotes
Bax redistribution and apoptosis in MCF7 breast carcinoma cells. J
Lipid Res. 50:2389–2397. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kim YM, Kim MY, Kim HJ, Roh GS, Ko GH, Seo
HG, Lee JH and Chang KC: Compound C independent of AMPK inhibits
ICAM-1 and VCAM-1 expression in inflammatory stimulants-activated
endothelial cells in vitro and in vivo. Atherosclerosis. 219:57–64.
2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Vucicevic L, Misirkic M, Janjetovic K,
Vilimanovich U, Sudar E, Isenovic E, Prica M, Harhaji-Trajkovic L,
Kravic-Stevovic T, Bumbasirevic V and Trajkovic V: Compound C
induces protective autophagy in cancer cells through AMPK
inhibition-independent blockade of Akt/mTOR pathway. Autophagy.
7:40–50. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Martinez-Martin N, Blas-García A, Morales
JM, Marti-Cabrera M, Monleón D and Apostolova N: Metabolomics of
the effect of AMPK activation by AICAR on human umbilical vein
endothelial cells. Int J Mol Med. 29:88–94. 2012.PubMed/NCBI
|
24
|
Lee H, Kang R, Bae S and Yoon Y: AICAR, an
activator of AMPK, inhibits adipogenesis via the WNT/β-catenin
pathway in 3T3-L1 adipocytes. Int J Mol Med. 28:65–71.
2011.PubMed/NCBI
|
25
|
Guo D, Hildebrandt IJ, Prins RM, Soto H,
Mazzotta MM, Dang J, Czernin J, Shyy JY, Watson AD, Phelps M, et
al: The AMPK agonist AICAR inhibits the growth of
EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. Proc
Natl Acad Sci USA. 106:12932–12937. 2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Langelueddecke C, Jakab M, Ketterl N,
Lehner L, Hufnagl C, Schmidt S, Geibel JP, Fuerst J and Ritter M:
Effect of the AMP-kinase modulators AICAR, metformin and compound C
on insulin secretion of INS-1E rat insulinoma cells under standard
cell culture conditions. Cell Physiol Biochem. 29:75–86. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Fei F, Xin-rong W, Ming L and Huan L:
Effect of bioactive components in mulberry leaves on glucose
metabolism in insulinresistant HepG2 cells. J Guang Pharm Col.
27:637–639. 2011.
|
28
|
Li XL, He SM, Zhu Y, Feng B, Huang XQ,
Chen T and Zheng GJ: Establishment and identify of HepG2 cells
model of insulin resistance. Chin J Exp Trad Med Formul.
19:203–207. 2013.
|
29
|
Shaw RJ, Lamia KA, Vasquez D, Koo SH,
Bardeesy N, Depinho RA, Montminy M and Cantley LC: The kinase LKB1
mediates glucose homeostasis in liver and therapeutic effects of
metformin. Science. 310:1642–1646. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lin J, Tarr PT, Yang R, Rhee J, Puigserver
P, Newgard CB and Spiegelman BM: PGC-1beta in the regulation of
hepatic glucose and energy metabolism. J Biol Chem.
278:30843–30848. 2003. View Article : Google Scholar : PubMed/NCBI
|
31
|
He L, Sabet A, Djedjos S, Miller R, Sun X,
Hussain MA and Radovick S: Metformin and insulin suppress hepatic
gluconeogenesis through phosphorylation of CREB binding protein.
Cell. 137:635–646. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Caton PW, Kieswich J, Yaqoob MM, Holness
MJ and Sugden MC: Metformin opposes impaired AMPK and SIRT1
function and deleterious changes in core clock protein expression
in white adipose tissue of genetically-obese db/db mice. Diabetes
Obes Metab. 13:1097–1104. 2011. View Article : Google Scholar : PubMed/NCBI
|