Open Access

Effects of niflumic acid on γ‑aminobutyric acid‑induced currents in isolated dorsal root ganglion neurons of neuropathic pain rats

  • Authors:
    • Li‑Jie Wang
    • Yang Wang
    • Meng‑Jie Chen
    • Zhen‑Pu Tian
    • Bi‑Han Lu
    • Ke‑Tao Mao
    • Liang Zhang
    • Lei Zhao
    • Li‑Ya Shan
    • Li Li
    • Jun‑Qiang Si
  • View Affiliations

  • Published online on: June 26, 2017     https://doi.org/10.3892/etm.2017.4666
  • Pages: 1373-1380
  • Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Niflumic acid (NFA) is a type of non‑steroidal anti‑inflammatory drug. Neuropathic pain is caused by a decrease in presynaptic inhibition mediated by γ‑aminobutyric acid (GABA). In the present study, a whole‑cell patch‑clamp technique and intracellular recording were used to assess the effect of NFA on GABA‑induced inward current in dorsal root ganglion (DRG) neurons of a chronic constriction injury (CCI) model. It was observed that 1‑1,000 µmol/l GABA induced a concentration‑dependent inward current in DRG neurons. Compared with pseudo‑operated rats, the thermal withdrawal latency (TWL) of CCI rats significantly decreased (P<0.01); however, the TWLs of each NFA group (50 and 300 µmol/l) were significantly longer than that of the CCI group (P<0.01). In the CCI group, the response evoked by GABA (10‑6‑10‑3 mol/l) was reduced in a concentration dependent manner compared with a normal control group (P<0.01), and the current amplitudes of CCI rats activated by the same concentrations of GABA (10‑6‑10‑3 mol/l) were significantly decreased compared with the control group (P<0.05). The inward currents activated by 100 µmol/l GABA were suppressed by treatment with 1, 10 and 100 µmol/l NFA (5.32±3.51, 33.8±5.20, and 52.2±6.32%, respectively; P<0.05). The inverse potentials of GABA‑induced currents were 9.87±1.32 and 9.64±1.24 mV with and without NFA, respectively (P<0.05). Pre‑treatment with NFA exerted a strong inhibitory effect on the peak value of GABA‑induced current, and the GABA‑induced response was inhibited by the same concentrations of NFA (1, 10 and 100 µmol/l) in the control and CCI groups (P<0.05). The results suggest that NFA reduced the primary afferent depolarization (PAD) associated with neuropathic pain and mediated by the GABAA receptor. NFA may regulate neuropathic pain by inhibiting dorsal root reflexes, which are triggered PAD.
View Figures
View References

Related Articles

Journal Cover

August-2017
Volume 14 Issue 2

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Wang LJ, Wang Y, Chen MJ, Tian ZP, Lu BH, Mao KT, Zhang L, Zhao L, Shan LY, Li L, Li L, et al: Effects of niflumic acid on γ‑aminobutyric acid‑induced currents in isolated dorsal root ganglion neurons of neuropathic pain rats. Exp Ther Med 14: 1373-1380, 2017
APA
Wang, L., Wang, Y., Chen, M., Tian, Z., Lu, B., Mao, K. ... Si, J. (2017). Effects of niflumic acid on γ‑aminobutyric acid‑induced currents in isolated dorsal root ganglion neurons of neuropathic pain rats. Experimental and Therapeutic Medicine, 14, 1373-1380. https://doi.org/10.3892/etm.2017.4666
MLA
Wang, L., Wang, Y., Chen, M., Tian, Z., Lu, B., Mao, K., Zhang, L., Zhao, L., Shan, L., Li, L., Si, J."Effects of niflumic acid on γ‑aminobutyric acid‑induced currents in isolated dorsal root ganglion neurons of neuropathic pain rats". Experimental and Therapeutic Medicine 14.2 (2017): 1373-1380.
Chicago
Wang, L., Wang, Y., Chen, M., Tian, Z., Lu, B., Mao, K., Zhang, L., Zhao, L., Shan, L., Li, L., Si, J."Effects of niflumic acid on γ‑aminobutyric acid‑induced currents in isolated dorsal root ganglion neurons of neuropathic pain rats". Experimental and Therapeutic Medicine 14, no. 2 (2017): 1373-1380. https://doi.org/10.3892/etm.2017.4666