1
|
Jiang QS, Huang XN, Dai ZK, Yang GZ, Zhou
QX, Shi JS and Wu Q: Inhibitory effect of ginsenoside Rb1 on
cardiac hypertrophy induced by monocrotaline in rat. J
Ethnopharmacol. 111:567–572. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wang Z, Li M, Wu WK, Tan HM and Geng DF:
Ginsenoside Rb1 preconditioning protects against myocardial
infarction after regional ischemia and reperfusion by activation of
phosphatidylinositol-3-kinase signal transduction. Cardiovasc Drugs
Ther. 22:443–452. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang T, Yu X, Qu S, Xu H, Han B and Sui D:
Effect of ginsenoside Rb3 on myocardial injury and heart function
impairment induced by isoproterenol in rats. Eur J Pharmacol.
636:121–125. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang T, Yu XF, Qu SC, Xu HL and Sui DY:
Ginsenoside Rb3 inhibits angiotensin II-induced vascular smooth
muscle cells proliferation. Basic Clin Pharmacol Toxicol.
107:685–689. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhao H, Lv D, Zhang W, Dong W, Feng J,
Xiang Z, Huang L, Qin C and Zhang L: Ginsenoside-Rb1 attenuates
dilated cardiomyopathy in cTnT(R141W) transgenic mouse. J Pharmacol
Sci. 112:214–222. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shi Y, Han B, Yu X, Qu S and Sui D:
Ginsenoside Rb3 ameliorates myocardial ischemia-reperfusion injury
in rats. Pharm Biol. 49:900–906. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Liu X, Jiang Y, Yu X, Fu W, Zhang H and
Sui D: Ginsenoside-Rb3 protects the myocardium from
ischemia-reperfusion injury via the inhibition of apoptosis in
rats. Exp Ther Med. 8:1751–1756. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Li F, Wu X, Li J and Niu Q: Ginsenoside
Rg1 ameliorates hippocampal long-term potentiation and memory in an
Alzheimer's disease model. Mol Med Rep. 13:4904–4910. 2016.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Xu H, Yu X, Qu S, Chen Y, Wang Z and Sui
D: Protective effect of Panax quinquefolium 20(S)-protopanaxadiol
saponins, isolated from Pana quinquefolium, on permanent focal
cerebral ischemic injury in rats. Exp Ther Med. 7:165–170. 2014.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Radad K, Gille G, Moldzio R, Saito H and
Rausch WD: Ginsenosides Rb1 and Rg1 effects on mesencephalic
dopaminergic cells stressed with glutamate. Brain Res. 1021:41–53.
2004. View Article : Google Scholar : PubMed/NCBI
|
11
|
Qu X, Qu S, Yu X, Xu H, Chen Y, Ma X and
Sui D: Pseudo-G-Rh2 induces mitochondrial-mediated apoptosis in
SGC-7901 human gastric cancer cells. Oncol Rep. 26:1441–1446.
2011.PubMed/NCBI
|
12
|
Choi YJ, Lee HJ, Kang DW, Han IH, Choi BK
and Cho WH: Ginsenoside Rg3 induces apoptosis in the U87MG human
glioblastoma cell line through the MEK signaling pathway and
reactive oxygen species. Oncol Rep. 30:1362–1370. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kim BM, Kim DH, Park JH, Na HK and Surh
YJ: Ginsenoside Rg3 induces apoptosis of human breast cancer
(MDA-MB-231) cells. J Cancer Prev. 18:177–185. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lin G, Yu X, Wang J, Qu S and Sui D:
Beneficial effects of 20(S)-protopanaxadiol on antitumor activity
and toxicity of cyclophosphamide in tumor-bearing mice. Exp Ther
Med. 5:443–447. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang YH, Li HD, Li B, Jiang SD and Jiang
LS: Ginsenoside Rg3 induces DNA damage in human osteosarcoma cells
and reduces MNNG-induced DNA damage and apoptosis in normal human
cells. Oncol Rep. 31:919–925. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Luo Y, Zhang P, Zeng HQ, Lou SF and Wang
DX: Ginsenoside Rg3 induces apoptosis in human multiple myeloma
cells via the activation of Bcl-2-associated X protein. Mol Med
Rep. 12:3557–3562. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Vo HT, Cho JY, Choi YE, Choi YS and Jeong
YH: Kinetic study for the optimization of ginsenoside Rg3
production by heat treatment of ginsenoside Rb1. J Ginseng Res.
39:304–313. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Cheng LQ, Na JR, Bang MH, Kim MK and Yang
DC: Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by
Microbacterium sp. GS514. Phytochemistry. 69:218–224. 2008.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Quan LH, Min JW, Yang DU, Kim YJ and Yang
DC: Enzymatic biotransformation of ginsenoside Rb1 to 20(S)-Rg3 by
recombinant β-glucosidase from Microbacterium esteraromaticum. Appl
Microbiol Biotechnol. 94:377–384. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pfeffer JM and Pfeffer MA: Angiotensin
converting enzyme inhibition and ventricular remodeling in heart
failure. Am J Med. 84:37–44. 1988. View Article : Google Scholar : PubMed/NCBI
|
21
|
Pfeffer JM, Pfeffer MA, Mirsky I and
Braunwald E: Regression of left ventricular hypertrophy and
prevention of left ventricular dysfunction by captopril in the
spontaneously hypertensive rat. Proc Natl Acad Sci USA. 79:pp.
3310–3314. 1982; View Article : Google Scholar : PubMed/NCBI
|
22
|
Dias Da, Silva VJ, Viana PC Cavalcante, de
Melo Alves R, Salgado HC, Montano N and Fazan R Jr:
Antihypertensive action of amiodarone in spontaneously hypertensive
rats. Hypertension. 38:597–601. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang LP, Jiang YC, Yu XF, Xu HL, Li M,
Zhao XZ and Sui DY: Ginsenoside Rg3 improves cardiac function after
myocardial ischemia/reperfusion via attenuating apoptosis and
inflammation. Evid Based Complement Alternat Med. 2016:69678532016.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Williams GH, Braley LM and Menachery A:
Decreased adrenal responsiveness to angiotensin II: A defect
present in spontaneously hypertensive rats. A possible model of
human essential hypertension. J Clin Invest. 69:31–37. 1982.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Duprez DA: Role of the
renin-angiotensin-aldosterone system in vascular remodeling and
inflammation: A clinical review. J Hypertens. 24:983–991. 2006.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhong J, Basu R, Guo D, Chow FL, Byrns S,
Schuster M, Loibner H, Wang XH, Penninger JM, Kassiri Z and Oudit
GY: Angiotensin-converting enzyme 2 suppresses pathological
hypertrophy, myocardial fibrosis, and cardiac dysfunction.
Circulation. 122:717–728. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Li M, Jiang Y, Jing W, Sun B, Miao C and
Ren L: Quercetin provides greater cardioprotective effect than its
glycoside derivative rutin on isoproterenol-induced cardiac
fibrosis in the rat. Can J Physiol Pharmacol. 91:951–959. 2013.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Zong WN, Yang XH, Chen XM, Huang HJ, Zheng
HJ, Qin XY, Yong YH, Cao K, Huang J and Lu XZ: Regulation of
angiotensin-(1–7) and angiotensin II type 1 receptor by telmisartan
and losartan in adriamycin-induced rat heart failure. Acta
Pharmacol Sin. 32:1345–1350. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Singal PK, Li T, Kumar D, Danelisen I and
Iliskovic N: Adriamycin-induced heart failure: Mechanism and
modulation. Mol Cell Biochem. 207:77–86. 2000. View Article : Google Scholar : PubMed/NCBI
|