1
|
Kommoju UJ, Maruda J, Kadarkarai Samy S,
Irgam K, Kotla JP and Reddy BM: Association of IRS1, CAPN10, and
PPARG gene polymorphisms with type 2 diabetes mellitus in the
high-risk population of Hyderabad, India. J Diabetes. 6:564–573.
2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yang X, Deng Y, Gu H, Ren X, Li N, Lim A,
Snellingen T, Liu X, Wang N and Liu N: Candidate gene association
study for diabetic retinopathy in Chinese patients with type 2
diabetes. Mol Vis. 20:200–214. 2014.PubMed/NCBI
|
3
|
Hivert MF, Vassy JL and Meigs JB:
Susceptibility to type 2 diabetes mellitus-from genes to
prevention. Nat Rev Endocrinol. 10:198–205. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zeng C, Shi X, Zhang B, Liu H, Zhang L,
Ding W and Zhao Y: The imbalance of Th17/Th1/Tregs in patients with
type 2 diabetes: Relationship with metabolic factors and
complications. J Mol Med (Berl). 90:175–186. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang C, Xiao C, Wang P, Xu W, Zhang A, Li
Q and Xu X: The alteration of Th1/Th2/Th17/Treg paradigm in
patients with type 2 diabetes mellitus: Relationship with diabetic
nephropathy. Hum Immunol. 75:289–296. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jagannathan-Bogdan M, McDonnell ME, Shin
H, Rehman Q, Hasturk H, Apovian CM and Nikolajczyk BS: Elevated
proinflammatory cytokine production by a skewed T cell compartment
requires monocytes and promotes inflammation in type 2 diabetes. J
Immunol. 186:1162–1172. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Dellamea BS, Leitao CB, Friedman R and
Canani LH: Nitric oxide system and diabetic nephropathy.
Diabetology and Metabolic Syndrome. 6:172014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Okada S, Saito M, Kazuyama E, Hanada T,
Kawaba Y, Hayashi A, Satoh K and Kanzaki S: Effects of
N-hexacosanol on nitric oxide synthase system in diabetic rat
nephropathy. Mol Cell Biochem. 315:169–177. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tang LL, Liu Q, Bu SZ, Xu LT, Wang QW, Mai
YF and Duan SW: The effect of environmental factors and DNA
methylation on type 2 diabetes mellitus. Yi Chuan. 35:1143–1152.
2013.(In Chinese). View Article : Google Scholar : PubMed/NCBI
|
10
|
Anderssohn M, McLachlan S, Lüneburg N,
Robertson C, Schwedhelm E, Williamson RM, Strachan MW, Ajjan R,
Grant PJ, Böger RH and Price JF: Genetic and environmental
determinants of dimethylarginines and association with
cardiovascular disease in patients with type 2 diabetes. Diabetes
Care. 37:846–854. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Nothwehr F and Stump T: Health-promoting
behaviors among adults with type 2 diabetes: Findings from the
health and retirement study. Prev Med. 30:407–414. 2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Green AJ, Bazata DD, Fox KM and Grandy S:
SHIELD Study Group: Health-related behaviours of people with
diabetes and those with cardiometabolic risk factors: Results from
SHIELD. Int J Clin Pract. 61:1791–1797. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Alberti KG and Zimmet PZ: Definition,
diagnosis and classification of diabetes mellitus and its
complications. Part 1: Diagnosis and classification of diabetes
mellitus provisional report of a WHO consultation. Diabet Med.
15:539–553. 1998. View Article : Google Scholar : PubMed/NCBI
|
14
|
Guariguata L, Whiting DR, Hambleton I,
Beagley J, Linnenkamp U and Shaw JE: Global estimates of diabetes
prevalence for 2013 and projections for 2035. Diabetes Res Clin
Pract. 103:137–149. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Mandke P, Wyatt N, Fraser J, Bates B,
Berberich SJ and Markey MP: MicroRNA-34a modulates MDM4 expression
via a target site in the open reading frame. PLoS One.
7:e420342012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Guay C, Roggli E, Nesca V, Jacovetti C and
Regazzi R: Diabetes mellitus, a microRNA-related disease? Transl
Res. 157:253–264. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wu X, Zhong D, Gao Q, Zhai W, Ding Z and
Wu J: MicroRNA-34a inhibits human osteosarcoma proliferation by
downregulating ether à go-go 1 expression. Int J Med Sci.
10:676–682. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tan J, Fan L, Mao JJ, Chen B, Zheng L,
Zhang T, Li T, Duan J, Duan Y, Jin Z and Kuang W: Restoration of
miR-34a in p53 deficient cells unexpectedly promotes the cell
survival by increasing NFkB activity. J Cell Biochem.
113:2903–2908. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Okazuka K, Wakabayashi Y, Kashihara M,
Inoue J, Sato T, Yokoyama M, Aizawa S, Aizawa Y, Mishima Y and
Kominami R: p53 prevents maturation of T cell development to the
immature CD4−CD8+ stage in
Bcl11b−/− mice. Biochem Biophys Res Commun. 328:545–549.
2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zheng SJ, Lamhamedi-Cherradi SE, Wang P,
Xu L and Chen YH: Tumor suppressor p53 inhibits autoimmune
inflammation and macrophage function. Diabetes. 54:1423–1428. 2005.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang S, Zheng M, Kibe R, Huang Y, Marrero
L, Warren S, Zieske AW, Iwakuma T, Kolls JK and Cui Y: Trp53
negatively regulates autoimmunity via the STAT3-Th17 axis. FASEB J.
25:2387–2398. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gururajan M, Haga CL, Das S, Leu CM,
Hodson D, Josson S, Turner M and Cooper MD: MicroRNA 125b
inhibition of B cell differentiation in germinal centers. Int
Immunol. 22:583–592. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Villeneuve LM, Kato M, Reddy MA, Wang M,
Lanting L and Natarajan R: Enhanced levels of microRNA-125b in
vascular smooth muscle cells of diabetic db/db mice lead to
increased inflammatory gene expression by targeting the histone
methyltransferase Suv39h1. Diabetes. 59:2904–2915. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
American Diabetes Association, . Diagnosis
and classification of diabetes mellitus. Diabetes Care. 35 Suppl
1:S64–S71. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Tao W, Dong X, Kong G, Fang P, Huang X and
Bo P: Elevated circulating hsa-miR-106b, hsa-miR-26a, and
hsa-miR-29b in type 2 diabetes mellitus with diarrhea-predominant
irritable bowel syndrome. Gastroenterol Res Pract.
2016:92562092016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Latouche C, Natoli A, Reddy-Luthmoodoo M,
Heywood SE, Armitage JA and Kingwell BA: MicroRNA-194 modulates
glucose metabolism and its skeletal muscle expression is reduced in
diabetes. PLoS One. 11:e01551082016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sardu C, Barbieri M, Rizzo MR, Paolisso P,
Paolisso G and Marfella R: Cardiac resynchronization therapy
outcomes in type 2 diabetic patients: Role of MicroRNA changes. J
Diabetes Res. 2016:72925642016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang L, He S, Guo S, Xie W, Xin R, Yu H,
Yang F, Qiu J, Zhang D, Zhou S and Zhang K: Down-regulation of
miR-34a alleviates mesangial proliferation in vitro and glomerular
hypertrophy in early diabetic nephropathy mice by targeting GAS1. J
Diabetes Complications. 28:259–264. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chang TC, Wentzel EA, Kent OA,
Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M,
Ferlito M, Lowenstein CJ, et al: Transactivation of miR-34a by p53
broadly influences gene expression and promotes apoptosis. Mol
Cell. 26:745–752. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wei R, Yang J, Liu GQ, Gao MJ, Hou WF,
Zhang L, Gao HW, Liu Y, Chen GA and Hong TP: Dynamic expression of
microRNAs during the differentiation of human embryonic stem cells
into insulin-producing cells. Gene. 518:246–255. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chakraborty C, Doss CG, Bandyopadhyay S
and Agoramoorthy G: Influence of miRNA in insulin signaling pathway
and insulin resistance: Micro-molecules with a major role in type-2
diabetes. Wiley Interdiscip Rev RNA. 5:697–712. 2014.PubMed/NCBI
|
33
|
Chakraborty C, George Priya, Doss C and
Bandyopadhyay S: miRNAs in insulin resistance and
diabetes-associated pancreatic cancer: The ‘minute and miracle’
molecule moving as a monitor in the ‘genomic galaxy’. Curr Drug
Targets. 14:1110–1117. 2013. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lovis P, Roggli E, Laybutt DR, Gattesco S,
Yang JY, Widmann C, Abderrahmani A and Regazzi R: Alterations in
microRNA expression contribute to fatty acid-induced pancreatic
beta-cell dysfunction. Diabetes. 57:2728–2736. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao
Y, Dong Q, Pang Z, Guan Q, Gao L, et al: Significance of serum
microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: A
clinical study. Acta Diabetol. 48:61–69. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Nesca V, Guay C, Jacovetti C, Menoud V,
Peyot ML, Laybutt DR, Prentki M and Regazzi R: Identification of
particular groups of microRNAs that positively or negatively impact
on beta cell function in obese models of type 2 diabetes.
Diabetologia. 56:2203–2212. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hotamisligil GS: Inflammation and
metabolic disorders. Nature. 444:860–867. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lasselin J and Capuron L: Chronic
low-grade inflammation in metabolic disorders: Relevance for
behavioral symptoms. Neuroimmunomodulation. 21:95–101. 2014.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Santos VR, Ribeiro FV, Lima JA, Napimoga
MH, Bastos MF and Duarte PM: Cytokine levels in sites of chronic
periodontitis of poorly controlled and well-controlled type 2
diabetic subjects. J Clin Periodontol. 37:1049–1058. 2010.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Sakaguchi S, Ono M, Setoguchi R, Yagi H,
Hori S, Fehervari Z, Shimizu J, Takahashi T and Nomura T:
Foxp3+ CD25+ CD4+ natural
regulatory T cells in dominant self-tolerance and autoimmune
disease. Immunol Rev. 212:8–27. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bettelli E, Oukka M and Kuchroo VK:
T(H)-17 cells in the circle of immunity and autoimmunity. Nat
Immunol. 8:345–350. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Homey B: After TH1/TH2 now comes
Treg/TH17: Significance of T helper cells in immune response
organization. Hautarzt. 57:730–732. 2006.(In German). View Article : Google Scholar : PubMed/NCBI
|
43
|
Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B,
Korzh V, Lodish HF and Lim B: MicroRNA-125b is a novel negative
regulator of p53. Genes Dev. 23:862–876. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lin MH, Chou FC, Yeh LT, Fu SH, Chiou HY,
Lin KI, Chang DM and Sytwu HK: B lymphocyte-induced maturation
protein 1 (BLIMP-1) attenuates autoimmune diabetes in NOD mice by
suppressing Th1 and Th17 cells. Diabetologia. 56:136–146. 2013.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Cretney E, Xin A, Shi W, Minnich M, Masson
F, Miasari M, Belz GT, Smyth GK, Busslinger M, Nutt SL and Kallies
A: The transcription factors Blimp-1 and IRF4 jointly control the
differentiation and function of effector regulatory T cells. Nat
Immunol. 12:304–311. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Polager S and Ginsberg D: p53 and E2f:
Partners in life and death. Nat Rev Cancer. 9:738–748. 2009.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Huber M, Brüstle A, Reinhard K, Guralnik
A, Walter G, Mahiny A, von Löw E and Lohoff M: IRF4 is essential
for IL-21-mediated induction, amplification, and stabilization of
the Th17 phenotype. Proc Natl Acad Sci USA. 105:pp. 20846–20851.
2008, View Article : Google Scholar : PubMed/NCBI
|
48
|
Allan SE, Crome SQ, Crellin NK, Passerini
L, Steiner TS, Bacchetta R, Roncarolo MG and Levings MK:
Activation-induced FOXP3 in human T effector cells does not
suppress proliferation or cytokine production. Int Immunol.
19:345–354. 2007. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kmieciak M, Gowda M, Graham L, Godder K,
Bear HD, Marincola FM and Manjili MH: Human T cells express CD25
and Foxp3 upon activation and exhibit effector/memory phenotypes
without any regulatory/suppressor function. J Transl Med. 7:892009.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Min HK, Kapoor A, Fuchs M, Mirshahi F,
Zhou H, Maher J, Kellum J, Warnick R, Contos MJ and Sanyal AJ:
Increased hepatic synthesis and dysregulation of cholesterol
metabolism is associated with the severity of nonalcoholic fatty
liver disease. Cell Metab. 15:665–674. 2012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Li X, Lian F, Liu C, Hu KQ and Wang XD:
Isocaloric pair-fed high-carbohydrate diet induced more hepatic
steatosis and inflammation than high-fat diet mediated by
miR-34a/SIRT1 axis in mice. Sci Rep. 5:167742015. View Article : Google Scholar : PubMed/NCBI
|