1
|
Mitra S, Mucha M, Khatri SN, Glenon R,
Schulte MK and Bult-Ito A: Attenuation of compulsive-like behavior
through positive allosteric modulation of α4β2 nicotinic
acetylcholine receptors in non-induced compulsive-like mice. Front
Behav Neurosci. 10:2442017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Tregellas JR, Tanabe J, Rojas DC, Shatti
S, Olincy A, Johnson L, Martin LF, Soti F, Kem WR, Leonard S, et
al: Effects of an α 7-nicotinic agonist on default network activity
in schizophrenia. Biol Psychiatry. 69:7–11. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
de Moura FB and McMahon LR: The
contribution of α4β2 and non-α4β2 nicotinic acetylcholine receptors
to the discriminative stimulus effects of nicotine and varenicline
in mice. Psychopharmacology (Berl). 234:781–792. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Pammolli F, Magazzini L and Riccaboni M:
The productivity crisis in pharmaceutical R&D. Nat Rev Drug
Discov. 10:428–438. 2011. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Gotti C, Moretti M, Gaimarri A, Zanardi A,
Clementi F and Zoli M: Heterogeneity and complexity of native brain
nicotinic receptors. Biochem Pharmacol. 74:1102–1111. 2007.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Tuesta LM, Fowler CD and Kenny PJ: Recent
advances in understanding nicotinic receptor signaling mechanisms
that regulate drug self-administration behavior. Biochem Pharmacol.
82:984–995. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tsetlin VI: Three-finger snake neurotoxins
and Ly6 proteins targeting nicotinic acetylcholine receptors:
Pharmacological tools and endogenous modulators. Trends Pharmacol
Sci. 36:109–123. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
King GF and Coaker H: The future of
venoms-based drug discovery: An interview with Glenn King. Future
Med Chem. 6:1613–1615. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xie S, Feng J, Yu C, Li Z, Wu Y, Cao Z, Li
W, He X, Xiang M and Han S: Identification of a new specific Kv1.3
channel blocker, Ctri9577, from the scorpion Chaerilus tricostatus.
Peptides. 36:94–99. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jurado-Coronel JC, Avila-Rodriguez M,
Capani F, Gonzalez J, Moran VE and Barreto GE: Targeting the
nicotinic acetylcholine receptors (nAChRs) in astrocytes as a
potential therapeutic target in Parkinsons disease. Curr Pharm Des.
22:1305–1311. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zeisel SH and da Costa KA: Choline: An
essential nutrient for public health. Nutr Rev. 67:615–623. 2009.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Fioravanti M and Yanagi M:
Cytidinediphosphocholine (CDP-choline) for cognitive and
behavioural disturbances associated with chronic cerebral disorders
in the elderly. Cochrane Database Syst Rev. 2:CD0002692005.
|
13
|
Knott V, de la Salle S, Choueiry J, Impey
D, Smith D, Smith M, Beaudry E, Saghir S, Ilivitsky V and Labelle
A: Neurocognitive effects of acute choline supplementation in low,
medium and high performer. Pharmacol Biochem Behav. 131:119–129.
2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xiao C, Miwa JM, Henderson BJ, Wang Y,
Deshpande P, McKinney SL and Lester HA: Nicotinic receptor
subtype-selective circuit patterns in the subthalamic nucleus. J
Neurosci. 35:3734–3746. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shen J and Wu J: Nicotinic cholinergic
mechanisms in Alzheimers disease. Int Rev Neurobiol. 124:275–292.
2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bauwens M, Mottaghy FM and Bucerius J: PET
imaging of the human nicotinic cholinergic pathway in
atherosclerosis. Curr Cardiol Rep. 17:672015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Müller MLTM and Bohnen NI: Cholinergic
dysfunction in Parkinsons disease. Curr Neurol Neurosci Rep.
13:3772013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Emre M: Dementia associated with
Parkinsons disease. Lancet Neurol. 2:229–237. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kutlu MG and Gould TJ: Nicotinic
receptors, memory, and hippocampus. Curr Top Behav Neurosci.
23:137–163. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wada T, Naito M, Kenmochi H, Tsuneki H and
Sasaoka T: Chronic nicotine exposure enhances insulin-induced
mitogenic signaling via up-regulation of alpha7 nicotinic receptors
in isolated rat aortic smooth muscle cells. Endocrinology.
148:790–799. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Alamanda V, Singh S, Lawrence NJ and
Chellappan SP: Nicotine-mediated induction of E-selectin in aortic
endothelial cells requires Src kinase and E2F1 transcriptional
activity. Biochem Biophys Res Commun. 418:56–61. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Koga M, Kanaoka Y, Ohkido Y, Kubo N,
Ohishi K, Sugiyama K, Yamauchi A and Kataoka Y: Varenicline
aggravates plaque formation through α7 nicotinic acetylcholine
receptors in ApoE KO mice. Biochem Biophys Res Commun. 455:194–197.
2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Rollema H, Coe JW, Chambers LK, Hurst RS,
Stahl SM and Williams KE: Rationale, pharmacology and clinical
efficacy of partial agonists of alpha4beta2 nACh receptors for
smoking cessation. Trends Pharmacol Sci. 28:316–325. 2007.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Mihalak KB, Carroll FI and Luetje CW:
Varenicline is a partial agonist at alpha4beta2 and a full agonist
at alpha7 neuronal nicotinic receptors. Mol Pharmacol. 70:801–805.
2006. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lotfipour S, Mandelkern M, Alvarez-Estrada
M and Brody AL: A single administration of low-dose varenicline
saturates α4β2* nicotinic acetylcholine receptors in the human
brain. Neuropsychopharmacology. 37:1738–1748. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rollema H, Coe JW, Chambers LK, Hurst RS,
Stahl SM and Williams KE: Rationale, pharmacology and clinical
efficacy of partial agonists of alpha4beta2 nACh receptors for
smoking cessation. Trends Pharmacol Sci. 28:316–325. 2007.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Lam S and Patel PN: Varenicline: A
selective alpha4beta2 nicotinic acetylcholine receptor partial
agonist approved for smoking cessation. Cardiol Rev. 15:154–161.
2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Isman MB: Botanical insecticides,
deterrents, and repellents in modern agriculture and an
increasingly regulated world. Annu Rev Entomol. 51:45–66. 2006.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Brown LA, Ihara M, Buckingham SD, Matsuda
K and Sattelle DB: Neonicotinoid insecticides display partial and
super agonist actions on native insect nicotinic acetylcholine
receptors. J Neurochem. 99:608–615. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Faucon JP, Aurières C, Drajnudel P,
Mathieu L, Ribière M, Martel AC, Zeggane S, Chauzat MP and Aubert
MF: Experimental study on the toxicity of imidacloprid given in
syrup to honey bee (Apis mellifera) colonies. Pest Manag Sci.
61:111–125. 2005. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Matsuda K, Kanaoka S, Akamatsu M and
Sattelle DB: Diverse actions and target-site selectivity of
neonicotinoids: Structural insights. Mol Pharmacol. 76:1–10. 2009.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Hannan S, Mortensen M and Smart TG: Snake
neurotoxin α-bungarotoxin is an antagonist at native GABA(A)
receptors. Neuropharmacology. 93:28–40. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gershoni JM: Expression of the
α-bungarotoxin binding site of the nicotinic acetylcholine receptor
by Escherichia coli transformants. Proc Natl Acad Sci USA. 84:pp.
4318–4321. 1987; View Article : Google Scholar : PubMed/NCBI
|
34
|
Corringer PJ, Poitevin F, Prevost MS,
Sauguet L, Delarue M and Changeux JP: Structure and pharmacology of
pentameric receptor channels: From bacteria to brain. Structure.
20:941–956. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bauwens M, Mottaghy FM and Bucerius J: PET
imaging of the human nicotinic cholinergic pathway in
atherosclerosis. Curr Cardiol Rep. 17:672015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wong DF, Kuwabara H, Kim J, Brasic JR,
Chamroonrat W, Gao Y, Valentine H, Willis W, Mathur A, McCaul ME,
et al: PET imaging of high-affinity α4β2 nicotinic acetylcholine
receptors in humans with 18F-AZAN, a radioligand with
optimal brain kinetics. J Nucl Med. 54:1308–1314. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Rollema H, Coe JW, Chambers LK, Hurst RS,
Stahl SM and Williams KE: Rationale, pharmacology and clinical
efficacy of partial agonists of alpha4beta2 nACh receptors for
smoking cessation. Trends Pharmacol Sci. 28:316–325. 2007.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Kimes AS, Horti AG, London ED, Chefer SI,
Contoreggi C, Ernst M, Friello P, Koren AO, Kurian V, Matochik JA,
et al: 2-[18F]F-A-85380: PET imaging of brain nicotinic
acetylcholine receptors and whole body distribution in humans.
FASEB J. 17:1331–1333. 2003.PubMed/NCBI
|
39
|
Colloby SJ, Perry EK, Pakrasi S, Pimlott
SL, Wyper DJ, McKeith IG, Williams ED and OBrien JT: Nicotinic
123I-5IA-85380 single photon emission computed
tomography as a predictor of cognitive progression in Alzheimers
disease and dementia with Lewy bodies. Am J Geriatr Psychiatry.
18:86–90. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
García AP, Aitta-aho T, Schaaf L, Heeley
N, Heuschmid L, Bai Y, Barrantes FJ and Apergis-Schoute J:
Nicotinic α4 receptor-mediated cholinergic influences on food
intake and activity patterns in hypothalamic circuits. PLoS One.
10:e01333272015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Lebbe EKM, Peigneur S, Wijesekara I and
Tytgat J: Conotoxins targeting nicotinic acetylcholine receptors:
An overview. Mar Drugs. 12:2970–3004. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lewis RJ, Dutertre S, Vetter I and
Christie MJ: Conus venom peptide pharmacology. Pharmacol Rev.
64:259–298. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang S, Zhao C, Liu Z, Wang X, Liu N, Du W
and Dai Q: Structural and functional characterization of a novel
α-conotoxin Mr1.7 from Conus marmoreus targeting neuronal nAChR
α3β2, α9α10 and α6/α3β2β3 subtypes. Mar Drugs. 13:3259–3275. 2015.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Dutertre S, Ulens C, Büttner R, Fish A,
van Elk R, Kendel Y, Hopping G, Alewood PF, Schroeder C, Nicke A,
et al: AChBP-targeted α-conotoxin correlates distinct binding
orientations with nAChR subtype selectivity. EMBO J. 26:3858–3867.
2007. View Article : Google Scholar : PubMed/NCBI
|
45
|
Dutertre S, Nicke A, Tyndall JD and Lewis
RJ: Determination of α-conotoxin binding modes on neuronal
nicotinic acetylcholine receptors. J Mol Recognit. 17:339–347.
2004. View Article : Google Scholar : PubMed/NCBI
|
46
|
Utkin YN: Animal venom studies: Current
benefits and future developments. World J Biol Chem. 6:28–33. 2015.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Roly ZY, Islam MM and Reza MA: A
comparative in silico characterization of functional and
physicochemical properties of 3FTx (three finger toxin) proteins
from four venomous snakes. Bioinformation. 10:281–287. 2014.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Sunagar K, Jackson TNW, Undheim EAB, Ali
SA, Antunes A and Fry BG: Three-fingered RAVERs: Rapid accumulation
of variations in exposed residues of snake venom toxins. Toxins
(Basel). 5:2172–2208. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Tsetlin VI: Three-finger snake neurotoxins
and Ly6 proteins targeting nicotinic acetylcholine receptors:
Pharmacological tools and endogenous modulators. Trends Pharmacol
Sci. 36:109–123. 2015. View Article : Google Scholar : PubMed/NCBI
|
50
|
Estrada G, Villegas E and Corzo G: Spider
venoms: A rich source of acylpolyamines and peptides as new leads
for CNS drugs. Nat Prod Rep. 24:145–161. 2007. View Article : Google Scholar : PubMed/NCBI
|
51
|
Olsen CA, Kristensen AS and Strømgaard K:
Small molecules from spiders used as chemical probes. Angew Chem
Int Ed Engl. 50:11296–11311. 2011. View Article : Google Scholar : PubMed/NCBI
|
52
|
Strømgaard K, Jensen LS and Vogensen SB:
Polyamine toxins: Development of selective ligands for ionotropic
receptors. Toxicon. 45:249–254. 2005. View Article : Google Scholar : PubMed/NCBI
|
53
|
Rocha-E-Silva TA, Rostelato-Ferreira S,
Leite GB, da Silva PI Jr, Hyslop S and Rodrigues-Simioni L: VdTX-1,
a reversible nicotinic receptor antagonist isolated from venom of
the spider Vitalius dubius (Theraphosidae). Toxicon. 70:135–141.
2013. View Article : Google Scholar : PubMed/NCBI
|