Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery (Review)
- Authors:
- Jin‑Shan Yang
- Hui‑Xing Wei
- Ping‑Ping Chen
- Gang Wu
-
Affiliations: Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China - Published online on: January 4, 2018 https://doi.org/10.3892/etm.2018.5702
- Pages: 2219-2227
-
Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hirai H, Maru Y, Hagiwara K, Nishida J and Takaku F: A novel putative tyrosine kinase receptor encoded by the eph gene. Science. 238:1717–1720. 1987. View Article : Google Scholar : PubMed/NCBI | |
Klein R: Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat Neurosci. 12:15–20. 2009. View Article : Google Scholar : PubMed/NCBI | |
Aoto J and Chen L: Bidirectional ephrin/Eph signaling in synaptic functions. Brain Res. 1184:72–80. 2007. View Article : Google Scholar : PubMed/NCBI | |
Flanagan JG and Vanderhaeghen P: The ephrins and Eph receptors in neural development. Annu Rev Neurosci. 21:309–345. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wilkinson DG: Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci. 2:155–164. 2001. View Article : Google Scholar : PubMed/NCBI | |
Goldshmit Y, McLenachan S and Turnley A: Roles of Eph receptors and ephrins in the normal and damaged adult CNS. Brain Res Rev. 52:327–345. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chumley MJ, Catchpole T, Silvany RE, Kernie SG and Henkemeyer M: EphB receptors regulate stem/progenitor cell proliferation, migration, and polarity during hippocampal neurogenesis. J Neurosci. 27:13481–13490. 2007. View Article : Google Scholar : PubMed/NCBI | |
Labrador JP, Brambilla R and Klein R: The N-terminal globular domain of Eph receptors is sufficient for ligand binding and receptor signaling. EMBO J. 16:3889–3897. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lackmann M, Oates AC, Dottori M, Smith FM, Do C, Power M, Kravets L and Boyd AW: Distinct subdomains of the EphA3 receptor mediate ligand binding and receptor dimerization. J Biol Chem. 273:20228–20237. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bruckner K and Klein R: Signaling by Eph receptors and their ephrin ligands. Curr Opin Neurobiol. 8:375–382. 1998. View Article : Google Scholar : PubMed/NCBI | |
Holland SJ, Peles E, Pawson T and Schlessinger J: Cell-contact-dependent signalling in axon growth and guidance: Eph receptor tyrosine kinases and receptor protein tyrosine phosphatase beta. Curr Opin Neurobiol. 8:117–127. 1998. View Article : Google Scholar : PubMed/NCBI | |
Nimnual AS, Yatsula BA and Bar-Sagi D: Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science. 279:560–563. 1998. View Article : Google Scholar : PubMed/NCBI | |
Schultz J, Ponting CP, Hofmann K and Bork P: SAM as a protein interaction domain involved in developmental regulation. Protein science Protein Sci. 6:249–253. 1997. View Article : Google Scholar : PubMed/NCBI | |
Stapleton D, Balan I, Pawson T and Sicheri F: The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat Struct Biol. 6:44–49. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kullander K and Klein R: Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol. 3:475–486. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lin D, Gish GD, Songyang Z and Pawson T: The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. J Biol Chem. 274:3726–3733. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pasquale EB: Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol. 6:462–475. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mellitzer G, Xu Q and Wilkinson DG: Eph receptors and ephrins restrict cell intermingling and communication. Nature. 400:77–81. 1999. View Article : Google Scholar : PubMed/NCBI | |
Klein R: Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr Opin Cell Biol. 16:580–589. 2004. View Article : Google Scholar : PubMed/NCBI | |
Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T, Goldfarb M and Yancopoulos GD: Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science. 266:816–819. 1994. View Article : Google Scholar : PubMed/NCBI | |
Stein E, Lane AA, Cerretti DP, Schoecklmann HO, Schroff AD, Van Etten RL and Daniel TO: Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 12:667–678. 1998. View Article : Google Scholar : PubMed/NCBI | |
Carter N, Nakamoto T, Hirai H and Hunter T: EphrinA1-induced cytoskeletal re-organization requires FAK and p130(cas). Nat Cell Biol. 4:565–573. 2002.PubMed/NCBI | |
Lawrenson ID, Wimmer-Kleikamp SH, Lock P, Schoenwaelder SM, Down M, Boyd AW, Alewood PF and Lackmann M: Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling. J Cell Sci. 115:1059–1072. 2002.PubMed/NCBI | |
Cowan CA and Henkemeyer M: Ephrins in reverse, park and drive. Trends Cell Biol. 12:339–346. 2002. View Article : Google Scholar : PubMed/NCBI | |
Davy A and Soriano P: Ephrin signaling in vivo: Look both ways. Dev Dyn. 232:1–10. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jing X, Miwa H, Sawada T, Nakanishi I, Kondo T, Miyajima M and Sakaguchi K: Ephrin-A1-mediated dopaminergic neurogenesis and angiogenesis in a rat model of Parkinson's disease. PLos One. 7:e320192012. View Article : Google Scholar : PubMed/NCBI | |
Holland SJ, Gale NW, Gish GD, Roth RA, Songyang Z, Cantley LC, Henkemeyer M, Yancopoulos GD and Pawson T: Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J. 16:3877–3888. 1997. View Article : Google Scholar : PubMed/NCBI | |
Henkemeyer M, Marengere LE, McGlade J, Olivier JP, Conlon RA, Holmyard DP, Letwin K and Pawson T: Immunolocalization of the Nuk receptor tyrosine kinase suggests roles in segmental patterning of the brain and axonogenesis. Oncogene. 9:1001–1014. 1994.PubMed/NCBI | |
Becker E, Huynh-Do U, Holland S, Pawson T, Daniel TO and Skolnik EY: Nck-interacting Ste20 kinase couples Eph receptors to c-Jun N-terminal kinase and integrin activation. Mol Cell Biol. 20:1537–1545. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wahl S, Barth H, Ciossek T, Aktories K and Mueller BK: Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J Cell Biol. 149:263–270. 2000. View Article : Google Scholar : PubMed/NCBI | |
Shamah SM, Lin MZ, Goldberg JL, Estrach S, Sahin M, Hu L, Bazalakova M, Neve RL, Corfas G, Debant A and Greenberg ME: EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell. 105:233–244. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Suh J, Cerretti DP, Zhou R and DiCicco-Bloom E: Ephrins stimulate neurite outgrowth during early cortical neurogenesis. Journal of neuroscience research. 66:1054–1063. 2001. View Article : Google Scholar : PubMed/NCBI | |
Takasu MA, Dalva MB, Zigmond RE and Greenberg ME: Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science. 295:491–495. 2002. View Article : Google Scholar : PubMed/NCBI | |
Tong J, Elowe S, Nash P and Pawson T: Manipulation of EphB2 regulatory motifs and SH2 binding sites switches MAPK signaling and biological activity. J Biol Chem. 278:6111–6119. 2003. View Article : Google Scholar : PubMed/NCBI | |
Goldshmit Y, Galea MP, Wise G, Bartlett PF and Turnley AM: Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J Neurosci. 24:10064–10073. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lisabeth EM, Falivelli G and Pasquale EB: Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol. 5:2013. View Article : Google Scholar : PubMed/NCBI | |
Dickson BJ: Rho GTPases in growth cone guidance. Curr Opin Neurobiol. 11:103–110. 2001. View Article : Google Scholar : PubMed/NCBI | |
Giniger E: How do Rho family GTPases direct axon growth and guidance? A proposal relating signaling pathways to growth cone mechanics. Differentiation. 70:385–396. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lehmann M, Fournier A, Selles-Navarro I, Dergham P, Sebok A, Leclerc N, Tigyi G and McKerracher L: Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci. 19:7537–7547. 1999.PubMed/NCBI | |
Dergham P, Ellezam B, Essagian C, Avedissian H, Lubell WD and McKerracher L: Rho signaling pathway targeted to promote spinal cord repair. J Neurosci. 22:6570–6577. 2002.PubMed/NCBI | |
Fournier AE, Takizawa BT and Strittmatter SM: Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci. 23:1416–1423. 2003.PubMed/NCBI | |
Nikolic M: The role of Rho GTPases and associated kinases in regulating neurite outgrowth. Int J Biochem Cell Biol. 34:731–745. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sahin M, Greer PL, Lin MZ, Poucher H, Eberhart J, Schmidt S, Wright TM, Shamah SM, O'connell S and Cowan CW: Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron. 46:191–204. 2005. View Article : Google Scholar : PubMed/NCBI | |
Henkemeyer M, Itkis OS, Ngo M, Hickmott PW and Ethell IM: Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol. 163:1313–1326. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Cho KS, Tchedre K, Lee SW, Guo C, Kinouchi H, Fried S, Sun X and Chen DF: Ephrin-A3 suppresses Wnt signaling to control retinal stem cell potency. Stem Cells. 31:349–359. 2013. View Article : Google Scholar : PubMed/NCBI | |
Steinle JJ, Meininger CJ, Forough R, Wu G, Wu MH and Granger HJ: Eph B4 receptor signaling mediates endothelial cell migration and proliferation via the phosphatidylinositol 3-kinase pathway. J Biol Chem. 277:43830–43835. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lai KO, Chen Y, Po HM, Lok KC, Gong K and Ip NY: Identification of the Jak/Stat proteins as novel downstream targets of EphA4 signaling in muscle: implications in the regulation of acetylcholinesterase expression. J Biol Chem. 279:13383–13392. 2004. View Article : Google Scholar : PubMed/NCBI | |
Macrae M, Neve RM, Rodriguez-Viciana P, Haqq C, Yeh J, Chen C, Gray JW and McCormick F: A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell. 8:111–118. 2005. View Article : Google Scholar : PubMed/NCBI | |
Holmberg J, Armulik A, Senti KA, Edoff K, Spalding K, Momma S, Cassidy R, Flanagan JG and Frisén J: Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev. 19:462–471. 2005. View Article : Google Scholar : PubMed/NCBI | |
Grunwald IC, Korte M, Adelmann G, Plueck A, Kullander K, Adams RH, Frotscher M, Bonhoeffer T and Klein R: Hippocampal plasticity requires postsynaptic ephrinBs. Nat Neurosci. 7:33–40. 2004. View Article : Google Scholar : PubMed/NCBI | |
Davy A, Aubin J and Soriano P: Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev. 18:572–583. 2004. View Article : Google Scholar : PubMed/NCBI | |
Davy A, Gale NW, Murray EW, Klinghoffer RA, Soriano P, Feuerstein C and Robbins SM: Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev. 13:3125–3135. 1999. View Article : Google Scholar : PubMed/NCBI | |
Davy A and Robbins SM: Ephrin-A5 modulates cell adhesion and morphology in an integrin-dependent manner. EMBO J. 19:5396–5405. 2000. View Article : Google Scholar : PubMed/NCBI | |
Suetterlin P, Marler KM and Drescher U: Axonal ephrinA/EphA interactions, and the emergence of order in topographic projections. Semin Cell Dev Biol. 23:1–6. 2012. View Article : Google Scholar : PubMed/NCBI | |
Torres R, Firestein BL, Dong H, Staudinger J, Olson EN, Huganir RL, Bredt DS, Gale NW and Yancopoulos GD: PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron. 21:1453–1463. 1998. View Article : Google Scholar : PubMed/NCBI | |
Holland SJ, Gale NW, Mbamalu G, Yancopoulos GD, Henkemeyer M and Pawson T: Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature. 383:722–725. 1996. View Article : Google Scholar : PubMed/NCBI | |
Bruckner K, Pasquale EB and Klein R: Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science. 275:1640–1643. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kalo MS, Yu HH and Pasquale EB: In vivo tyrosine phosphorylation sites of activated ephrin-B1 and ephB2 from neural tissue. J Biol Chem. 276:38940–38948. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cowan CA and Henkemeyer M: The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature. 413:174–179. 2001. View Article : Google Scholar : PubMed/NCBI | |
Palmer A, Zimmer M, Erdmann KS, Eulenburg V, Porthin A, Heumann R, Deutsch U and Klein R: EphrinB phosphorylation and reverse signaling: Regulation by Src kinases and PTP-BL phosphatase. Mol Cell. 9:725–737. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hsueh YP and Sheng M: Eph receptors, ephrins, and PDZs gather in neuronal synapses. Neuron. 21:1227–1229. 1998. View Article : Google Scholar : PubMed/NCBI | |
Salcedo R, Wasserman K, Young HA, Grimm MC, Howard OM, Anver MR, Kleinman HK, Murphy WJ and Oppenheim JJ: Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol. 154:1125–1135. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lu Q, Sun EE, Klein RS and Flanagan JG: Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell. 105:69–79. 2001. View Article : Google Scholar : PubMed/NCBI | |
Liebl DJ, Morris CJ, Henkemeyer M and Parada LF: mRNA expression of ephrins and Eph receptor tyrosine kinases in the neonatal and adult mouse central nervous system. J Neurosci Res. 71:7–22. 2003. View Article : Google Scholar : PubMed/NCBI | |
Murai KK and Pasquale EB: Can Eph receptors stimulate the mind? Neuron. 33:159–162. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hruska M and Dalva MB: Ephrin regulation of synapse formation, function and plasticity. Mol Cell Neurosci. 50:35–44. 2012. View Article : Google Scholar : PubMed/NCBI | |
Murai KK, Nguyen LN, Irie F, Yamaguchi Y and Pasquale EB: Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci. 6:153–160. 2003. View Article : Google Scholar : PubMed/NCBI | |
Vasileiou I, Adamakis I, Patsouris E and Theocharis S: Ephrins and pain. Expert Opin Ther Targets. 17:879–887. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bouvier D, Corera AT, Tremblay ME, Riad M, Chagnon M, Murai KK, Pasquale EB, Fon EA and Doucet G: Pre-synaptic and post-synaptic localization of EphA4 and EphB2 in adult mouse forebrain. J Neurochem. 106:682–695. 2008. View Article : Google Scholar : PubMed/NCBI | |
McKinnell IW, Makarenkova H, de Curtis I, Turmaine M and Patel K: EphA4, RhoB and the molecular development of feather buds are maintained by the integrity of the actin cytoskeleton. Dev Biol. 270:94–105. 2004. View Article : Google Scholar : PubMed/NCBI | |
Heintz TG, Eva R and Fawcett JW: Regional regulation of purkinje cell dendritic spines by integrins and Eph/Ephrins. PLoS One. 11:e01585582016. View Article : Google Scholar : PubMed/NCBI | |
Zhu XN, Liu XD, Zhuang H, Henkemeyer M, Yang JY and Xu NJ: Amygdala EphB2 signaling regulates glutamatergic neuron maturation and innate fear. J Neurosci. 36:10151–10162. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rodenas-Ruano A, Perez-Pinzon MA, Green EJ, Henkemeyer M and Liebl DJ: Distinct roles for ephrinB3 in the formation and function of hippocampal synapses. Dev Biol. 292:34–45. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cisse M and Checler F: Eph receptors: New players in Alzheimer's disease pathogenesis. Neurobiol Dis. 73:137–149. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kalo MS and Pasquale EB: Signal transfer by eph receptors. Cell Tissue Res. 298:1–9. 1999. View Article : Google Scholar | |
Zhou XL, Zhang CJ, Wang Y, Wang M, Sun LH, Yu LN, Cao JL and Yan M: EphrinB-EphB signaling regulates spinal pain processing via PKCgamma. Neuroscience. 307:64–72. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dalva MB, Takasu MA, Lin MZ, Shamah SM, Hu L, Gale NW and Greenberg ME: EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell. 103:945–956. 2000. View Article : Google Scholar : PubMed/NCBI | |
Grunwald IC, Korte M, Wolfer D, Wilkinson GA, Unsicker K, Lipp HP, Bonhoeffer T and Klein R: Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron. 32:1027–1040. 2001. View Article : Google Scholar : PubMed/NCBI | |
Armstrong JN, Saganich MJ, Xu NJ, Henkemeyer M, Heinemann SF and Contractor A: B-ephrin reverse signaling is required for NMDA-independent long-term potentiation of mossy fibers in the hippocampus. J Neurosci. 26:3474–3481. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lim BK, Matsuda N and Poo MM: Ephrin-B reverse signaling promotes structural and functional synaptic maturation in vivo. Nat Neurosci. 11:160–169. 2008. View Article : Google Scholar : PubMed/NCBI | |
Filosa A, Paixão S, Honsek SD, Carmona MA, Becker L, Feddersen B, Gaitanos L, Rudhard Y, Schoepfer R and Klopstock T: Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci. 12:1285–1292. 2009. View Article : Google Scholar : PubMed/NCBI | |
Carmona MA, Murai KK, Wang L, Roberts AJ and Pasquale EB: Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci USA. 106:pp. 12524–12529. 2009; View Article : Google Scholar : PubMed/NCBI | |
Battaglia AA, Sehayek K, Grist J, McMahon SB and Gavazzi I: EphB receptors and ephrin-B ligands regulate spinal sensory connectivity and modulate pain processing. Nat Neurosci. 6:339–340. 2003. View Article : Google Scholar : PubMed/NCBI | |
Song XJ, Cao JL, Li HC, Zheng JH, Song XS and Xiong LZ: Upregulation and redistribution of ephrinB and EphB receptor in dorsal root ganglion and spinal dorsal horn neurons after peripheral nerve injury and dorsal rhizotomy. Eur J Pain. 12:1031–1039. 2008. View Article : Google Scholar : PubMed/NCBI | |
Slack S, Battaglia A, Cibert-Goton V and Gavazzi I: EphrinB2 induces tyrosine phosphorylation of NR2B via Src-family kinases during inflammatory hyperalgesia. Neuroscience. 156:175–183. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ruan JP, Zhang HX, Lu XF, Liu YP and Cao JL: EphrinBs/EphBs signaling is involved in modulation of spinal nociceptive processing through a mitogen-activated protein kinases-dependent mechanism. Anesthesiology. 112:1234–1249. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yu LN, Zhou XL, Yu J, Huang H, Jiang LS, Zhang FJ, Cao JL and Yan M: PI3K contributed to modulation of spinal nociceptive information related to ephrinBs/EphBs. PLoS One. 7:e409302012. View Article : Google Scholar : PubMed/NCBI | |
Laussu J, Khuong A, Gautrais J and Davy A: Beyond boundaries-Eph:ephrin signaling in neurogenesis. Cell Adh Migr. 8:349–359. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aoki M, Yamashita T and Tohyama M: EphA receptors direct the differentiation of mammalian neural precursor cells through a mitogen-activated protein kinase-dependent pathway. J Biol Chem. 279:32643–32650. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ricard J, Salinas J, Garcia L and Liebl DJ: EphrinB3 regulates cell proliferation and survival in adult neurogenesis. Mol Cell Neurosci. 31:713–722. 2006. View Article : Google Scholar : PubMed/NCBI | |
Theus MH, Ricard J, Bethea JR and Liebl DJ: EphB3 limits the expansion of neural progenitor cells in the subventricular zone by regulating p53 during homeostasis and following traumatic brain injury. Stem Cells. 28:1231–1242. 2010.PubMed/NCBI | |
del Valle K, Theus MH, Bethea JR, Liebl DJ and Ricard J: Neural progenitors proliferation is inhibited by EphB3 in the developing subventricular zone. Int J Dev Neurosci. 29:9–14. 2011. View Article : Google Scholar : PubMed/NCBI | |
Baumann G, Travieso L, Liebl DJ and Theus MH: Pronounced hypoxia in the subventricular zone following traumatic brain injury and the neural stem/progenitor cell response. Exp Biol Med (Maywood). 238:830–841. 2013. View Article : Google Scholar : PubMed/NCBI | |
Khodosevich K, Watanabe Y and Monyer H: EphA4 preserves postnatal and adult neural stem cells in an undifferentiated state in vivo. J Cell Sci. 124:1268–1279. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ottone C, Krusche B, Whitby A, Clements M, Quadrato G, Pitulescu ME, Adams RH and Parrinello S: Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat Cell Biol. 16:1045–1056. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou N, Zhao WD, Liu DX, Liang Y, Fang WG, Li B and Chen YH: Inactivation of EphA2 promotes tight junction formation and impairs angiogenesis in brain endothelial cells. Microvasc Res. 82:113–121. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hassan-Mohamed I, Giorgio C, Incerti M, Russo S, Pala D, Pasquale EB, Zanotti I, Vicini P, Barocelli E, Rivara S, et al: UniPR129 is a competitive small molecule Eph-ephrin antagonist blocking in vitro angiogenesis at low micromolar concentrations. Br J Pharmacol. 171:5195–5208. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wiedemann E, Jellinghaus S, Ende G, Augstein A, Sczech R, Wielockx B, Weinert S, Strasser RH and Poitz DM: Regulation of endothelial migration and proliferation by ephrin-A1. Cell Signal. 29:84–95. 2017. View Article : Google Scholar : PubMed/NCBI | |
Miranda JD, White LA, Marcillo AE, Willson CA, Jagid J and Whittemore SR: Induction of Eph B3 after spinal cord injury. Exp Neurol. 156:218–222. 1999. View Article : Google Scholar : PubMed/NCBI | |
Moreno-Flores MT and Wandosell F: Up-regulation of Eph tyrosine kinase receptors after excitotoxic injury in adult hippocampus. Neuroscience. 91:193–201. 1999. View Article : Google Scholar : PubMed/NCBI | |
Rodger J, Lindsey KA, Leaver SG, King CE, Dunlop SA and Beazley LD: Expression of ephrin-A2 in the superior colliculus and EphA5 in the retina following optic nerve section in adult rat. Eur J Neurosci. 14:1929–1936. 2001. View Article : Google Scholar : PubMed/NCBI | |
Willson CA, Irizarry-Ramírez M, Gaskins HE, Cruz-Orengo L, Figueroa JD, Whittemore SR and Miranda JD: Upregulation of EphA receptor expression in the injured adult rat spinal cord. Cell Transplant. 11:229–239. 2002.PubMed/NCBI | |
Bundesen LQ, Scheel TA, Bregman BS and Kromer LF: Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J Neurosci. 23:7789–7800. 2003.PubMed/NCBI | |
del Zoppo GJ: Stroke and neurovascular protection. N Engl J Med. 354:553–555. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ren Z, Chen X, Yang J, Kress BT, Tong J, Liu H, Takano T, Zhao Y and Nedergaard M: Improved axonal regeneration after spinal cord injury in mice with conditional deletion of ephrin B2 under the GFAP promoter. Neuroscience. 241:89–99. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pasquale EB: Eph-ephrin bidirectional signaling in physiology and disease. Cell. 133:38–52. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lukes A, Mun-Bryce S, Lukes M and Rosenberg GA: Extracellular matrix degradation by metalloproteinases and central nervous system diseases. Mol Neurobiol. 19:267–284. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bunge RP, Puckett WR and Hiester ED: Observations on the pathology of several types of human spinal cord injury, with emphasis on the astrocyte response to penetrating injuries. Adv Neurol. 72:305–315. 1997.PubMed/NCBI | |
Fawcett JW and Asher RA: The glial scar and central nervous system repair. Brain Res Bull. 49:377–391. 1999. View Article : Google Scholar : PubMed/NCBI | |
Dawson MR, Levine JM and Reynolds R: NG2-expressing cells in the central nervous system: are they oligodendroglial progenitors? J Neurosci Res. 61:471–479. 2000. View Article : Google Scholar : PubMed/NCBI | |
Song I and Dityatev A: Crosstalk between glia, extracellular matrix and neurons. Brain Res Bull. S0361–9230. 2017. | |
Schnell L, Fearn S, Klassen H, Schwab ME and Perry VH: Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur J Neurosci. 11:3648–3658. 1999. View Article : Google Scholar : PubMed/NCBI | |
McGraw J, Hiebert GW and Steeves JD: Modulating astrogliosis after neurotrauma. J Neurosci Res. 63:109–115. 2001. View Article : Google Scholar : PubMed/NCBI | |
Xie M, Yi C, Luo X, Xu S, Yu Z, Tang Y, Zhu W, Du Y, Jia L and Zhang Q: Glial gap junctional communication involvement in hippocampal damage after middle cerebral artery occlusion. Ann Neurol. 70:121–132. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stichel CC and Muller HW: The CNS lesion scar: New vistas on an old regeneration barrier. Cell Tissue Res. 294:1–9. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH and Sofroniew MV: Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron. 23:297–308. 1999. View Article : Google Scholar : PubMed/NCBI | |
Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB and Sofroniew MV: Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci. 24:2143–2155. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jakeman LB and Reier PJ: Axonal projections between fetal spinal cord transplants and the adult rat spinal cord: A neuroanatomical tracing study of local interactions. J Comp Neurol. 307:311–334. 1991. View Article : Google Scholar : PubMed/NCBI | |
Fernandez-Klett F and Priller J: The fibrotic scar in neurological disorders. Brain Pathol. 24:404–413. 2014. View Article : Google Scholar : PubMed/NCBI | |
Joly S, Jordi N, Schwab ME and Pernet V: The Ephrin receptor EphA4 restricts axonal sprouting and enhances branching in the injured mouse optic nerve. Eur J Neurosci. 40:3021–3031. 2014. View Article : Google Scholar : PubMed/NCBI | |
Goldshmit Y, Spanevello MD, Tajouri S, Li L, Rogers F, Pearse M, Galea M, Bartlett PF, Boyd AW and Turnley AM: EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice. PLos One. 6:e246362011. View Article : Google Scholar : PubMed/NCBI | |
Choi DW: Excitotoxic cell death. J Neurobiol. 23:1261–1276. 1992. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Luo X, Huang X, Ning Q, Xie M and Wang W: Ephrin-A3 reverse signaling regulates hippocampal neuronal damage and astrocytic glutamate transport after transient global ischemia. J Neurochem. 131:383–394. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nikolakopoulou AM, Koeppen J, Garcia M, Leish J, Obenaus A and Ethell IM: Astrocytic Ephrin-B1 regulates synapse remodeling following traumatic brain injury. ASN Neuro. 8:1–18. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao C, Deng W and Gage FH: Mechanisms and functional implications of adult neurogenesis. Cell. 132:645–660. 2008. View Article : Google Scholar : PubMed/NCBI | |
Butti E, Cusimano M, Bacigaluppi M and Martino G: Neurogenic and non-neurogenic functions of endogenous neural stem cells. Front Neurosci. 8:922014. View Article : Google Scholar : PubMed/NCBI | |
Das A, Gupta T, Davla S, Prieto-Godino LL, Diegelmann S, Reddy OV, Raghavan KV, Reichert H, Lovick J and Hartenstein V: Neuroblast lineage-specific origin of the neurons of the Drosophila larval olfactory system. Dev Biol. 373:322–337. 2013. View Article : Google Scholar : PubMed/NCBI | |
Doeppner TR, Bretschneider E, Doehring M, Segura I, Sentürk A, Acker-Palmer A, Hasan MR, ElAli A, Hermann DM and Bähr M: Enhancement of endogenous neurogenesis in ephrin-B3 deficient mice after transient focal cerebral ischemia. Acta Neuropathol. 122:429–442. 2011. View Article : Google Scholar : PubMed/NCBI | |
Catchpole T and Henkemeyer M: EphB2 tyrosine kinase-dependent forward signaling in migration of neuronal progenitors that populate and form a distinct region of the dentate niche. J Neurosci. 31:11472–11483. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xing S, He Y, Ling L, Hou Q, Yu J, Zeng J and Pei Z: Blockade of EphB2 enhances neurogenesis in the subventricular zone and improves neurological function after cerebral cortical infarction in hypertensive rats. Brain Res. 1230:237–246. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yue X, Dreyfus C, Kong TA and Zhou R: A subset of signal transduction pathways is required for hippocampal growth cone collapse induced by ephrin-A5. Dev Neurobiol. 68:1269–1286. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wegmeyer H, Egea J, Rabe N, Gezelius H, Filosa A, Enjin A, Varoqueaux F, Deininger K, Schnütgen F, Brose N, et al: EphA4-dependent axon guidance is mediated by the RacGAP alpha2-chimaerin. Neuron. 55:756–767. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shu Y, Xiao B, Wu Q, Liu T, Du Y, Tang H, Chen S, Feng L, Long L and Li Y: The Ephrin-A5/EphA4 interaction modulates neurogenesis and angiogenesis by the p-Akt and p-ERK pathways in a mouse model of TLE. Mol Neurobiol. 53:561–576. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Yang H, Zhou X, Zhang L and Lu X: MiR-93 Targeting EphA4 promotes neurite outgrowth from spinal cord neurons. J Mol Neurosci. 58:517–524. 2016. View Article : Google Scholar : PubMed/NCBI | |
Prestoz L, Chatzopoulou E, Lemkine G, Spassky N, Lebras B, Kagawa T, Ikenaka K, Zalc B and Thomas JL: Control of axonophilic migration of oligodendrocyte precursor cells by Eph-ephrin interaction. Neuron Glia Biol. 1:73–83. 2004. View Article : Google Scholar : PubMed/NCBI | |
Benson MD, Romero MI, Lush ME, Lu QR, Henkemeyer M and Parada LF: Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proc Natl Acad Sci USA. 102:pp. 10694–10699. 2005; View Article : Google Scholar : PubMed/NCBI | |
Tsenkina Y, Ricard J, Runko E, Quiala-Acosta MM, Mier J and Liebl DJ: EphB3 receptors function as dependence receptors to mediate oligodendrocyte cell death following contusive spinal cord injury. Cell Death Dis. 6:e19222015. View Article : Google Scholar : PubMed/NCBI | |
Lodola A, Giorgio C, Incerti M, Zanotti I and Tognolini M: Targeting Eph/ephrin system in cancer therapy. Eur J Med Chem. 142:152–162. 2017. View Article : Google Scholar : PubMed/NCBI | |
Brantley-Sieders DM, Caughron J, Hicks D, Pozzi A, Ruiz JC and Chen J: EphA2 receptor tyrosine kinase regulates endothelial cell migration and vascular assembly through phosphoinositide 3-kinase-mediated Rac1 GTPase activation. J Cell Sci. 117:2037–2049. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hassan-Mohamed I, Giorgio C, Incerti M, Russo S, Pala D, Pasquale EB, Zanotti I, Vicini P, Barocelli E, Rivara S, et al: UniPR129 is a competitive small molecule Eph-ephrin antagonist blocking in vitro angiogenesis at low micromolar concentrations. Br J Pharmacol,. 171:5195–5208. 2014. View Article : Google Scholar | |
Tae N, Lee S, Kim O, Park J, Na S and Lee JH: Syntenin promotes VEGF-induced VEGFR2 endocytosis and angiogenesis by increasing ephrin-B2 function in endothelial cells. Oncotarget. 8:38886–38901. 2017. View Article : Google Scholar : PubMed/NCBI | |
Feng L, Shu Y, Wu Q, Liu T, Long H, Yang H, Li Y and Xiao B: EphA4 may contribute to microvessel remodeling in the hippocampal CA1 and CA3 areas in a mouse model of temporal lobe epilepsy. Mol Med Rep. 15:37–46. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shu Y, Xiao B, Wu Q, Liu T, Du Y, Tang H, Chen S, Feng L, Long L and Li Y: The Ephrin-A5/EphA4 interaction modulates neurogenesis and angiogenesis by the p-Akt and p-ERK pathways in a mouse model of TLE. Mol Neurobiol. 53:561–576. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cherry JD, Olschowka JA and O'Banion MK: Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. J Neuroinflammation. 11:982014. View Article : Google Scholar : PubMed/NCBI | |
Chan B and Sukhatme VP: Receptor tyrosine kinase EphA2 mediates thrombin-induced upregulation of ICAM-1 in endothelial cells in vitro. Thromb Res. 123:745–752. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fang WB, Ireton RC, Zhuang G, Takahashi T, Reynolds A and Chen J: Overexpression of EPHA2 receptor destabilizes adherens junctions via a RhoA-dependent mechanism. J Cell Sci. 121:358–368. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yuan K, Hong TM, Chen JJ, Tsai WH and Lin MT: Syndecan-1 up-regulated by ephrinB2/EphB4 plays dual roles in inflammatory angiogenesis. Blood. 104:1025–1033. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shen LL, Zhang LX, Wang LM, Zhou RJ, Yang CZ, Zhang J and Yang PS: Disturbed Expression of EphB4, but Not EphrinB2, inhibited bone regeneration in an in vivo inflammatory microenvironment. Mediators Inflamm. 2016:64304072016. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Yuan G, Cendan CM, Nassar MA, Lagerström MC, Kullander K, Gavazzi I and Wood JN: Nociceptor-expressed ephrin-B2 regulates inflammatory and neuropathic pain. Mol Pain. 6:772010. View Article : Google Scholar : PubMed/NCBI | |
Geng D, Kang L, Su Y, Jia J, Ma J, Li S, Du J and Cui H: Protective effects of EphB2 on Abeta1-42 oligomer-induced neurotoxicity and synaptic NMDA receptor signaling in hippocampal neurons. Neurochem Int. 63:283–290. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cissé M, Halabisky B, Harris J, Devidze N, Dubal DB, Sun B, Orr A, Lotz G, Kim DH, Hamto P, et al: Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature. 469:47–52. 2011. View Article : Google Scholar : PubMed/NCBI | |
Henderson JT, Georgiou J, Jia Z, Robertson J, Elowe S, Roder JC and Pawson T: The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron. 32:1041–1056. 2001. View Article : Google Scholar : PubMed/NCBI | |
Fu AK, Hung KW, Huang H, Gu S, Shen Y, Cheng EY, Ip FC, Huang X, Fu WY and Ip NY: Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer's disease. Proc Natl Acad Sci USA. 111:pp. 9959–9964. 2014; View Article : Google Scholar : PubMed/NCBI | |
Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z and van den Berg LH: Amyotrophic lateral sclerosis. Nat Rev Dis Primers. 3:170712017. View Article : Google Scholar : PubMed/NCBI | |
Tsuda H, Han SM, Yang Y, Tong C, Lin YQ, Mohan K, Haueter C, Zoghbi A, Harati Y, Kwan J, et al: The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors. Cell. 133:963–977. 2008. View Article : Google Scholar : PubMed/NCBI | |
Van Hoecke A, Schoonaert L, Lemmens R, Timmers M, Staats KA, Laird AS, Peeters E, Philips T, Goris A, Dubois B, et al: EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nat Med. 18:1418–1422. 2012. View Article : Google Scholar : PubMed/NCBI |