1
|
Qiao X, Li RS, Li H, Zhu GZ, Huang XG,
Shao S and Bai B: Intermedin protects against renal
ischemia-reperfusion injury by inhibition of oxidative stress. Am J
Physiol Renal Physiol. 304:F112–F119. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lin M, Li L, Li L, Pokhrel G, Qi G, Rong R
and Zhu T: The protective effect of baicalin against renal
ischemia-reperfusion injury through inhibition of inflammation and
apoptosis. BMC Complement Altern Med. 14:192014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ponticelli C: Ischaemia-reperfusion
injury: A major protagonist in kidney transplantation. Nephrol Dial
Transplant. 29:1134–1140. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bonventre JV and Yang L: Cellular
pathophysiology of ischemic acute kidney injury. J Clin Invest.
121:4210–4221. 2011. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Munshi R, Hsu C and Himmelfarb J: Advances
in understanding ischemic acute kidney injury. BMC Med. 9:112011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Yellon DM and Hausenloy DJ: Myocardial
reperfusion injury. N Engl J Med. 357:1121–1135. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Walker LM, York JL, Imam SZ, Ali SF,
Muldrew KL and Mayeux PR: Oxidative stress and reactive nitrogen
species generation during renal ischemia. Toxicol Sci. 63:143–148.
2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cutrín JC, Zingaro B, Camandola S, Boveris
A, Pompella A and Poli G: Contribution of gamma glutamyl
transpeptidase to oxidative damage of ischemic rat kidney. Kidney
Int. 57:526–533. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Moss NG, Vogel PA, Kopple TE and
Arendshorst WJ: Thromboxane-induced renal vasoconstriction is
mediated by the ADP-ribosyl cyclase CD38 and superoxide anion. Am J
Physiol Renal Physiol. 305:F830–F838. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ugochukwu NH and Cobourne MK: Modification
of renal oxidative stress and lipid peroxidation in
streptozotocin-induced diabetic rats treated with extracts from
Gongronema latifolium leaves. Clin Chim Acta. 336:73–81. 2003.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Kandemir FM, Ozkaraca M, Yildirim BA,
Hanedan B, Kirbas A, Kilic K, Aktas E and Benzer F: Rutin
attenuates gentamicin-induced renal damage by reducing oxidative
stress, inflammation, apoptosis, and autophagy in rats. Renal
Failure. 37:518–525. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Aragno M, Cutrin JC, Mastrocola R,
Perrelli MG, Restivo F, Poli G, Danni O and Boccuzzi G: Oxidative
stress and kidney dysfunction due to ischemia/reperfusion in rat:
Attenuation by dehydroepiandrosterone. Kidney Int. 64:836–843.
2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ozkok A and Edelstein CL: Pathophysiology
of cisplatin-induced acute kidney injury. Biomed Res Int.
2014:9678262014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kobayashi A, Kang MI, Watai Y, Tong KI,
Shibata T, Uchida K and Yamamoto M: Oxidative and electrophilic
stresses activate Nrf2 through inhibition of ubiquitination
activity of Keap1. Mol Cell Biol. 26:221–229. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen J, Wang W, Zhang Q, Li F, Lei T, Luo
D, Zhou H and Yang B: Low molecular weight fucoidan against renal
ischemia/reperfusion injury via inhibition of the MAPK signaling
pathway. PLoS One. 8:e562242013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhong Y, Deng Y, Chen Y, Chuang PY and
Cijiang He J: Therapeutic use of traditional Chinese herbal
medications for chronic kidney diseases. Kidney Int. 84:1108–1118.
2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen W, Jia Z, Pan MH and Anandh Babu PV:
Natural products for the prevention of oxidative Stress-related
diseases: Mechanisms and strategies. Oxid Med Cell Longev.
2016:46285022016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Su ZY, Shu L, Khor TO, Lee JH, Fuentes F
and Kong AN: A perspective on dietary phytochemicals and cancer
chemoprevention: Oxidative stress, Nrf2, and epigenomics. Top Curr
Chem. 329:133–162. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kitts DD and Lim KT: Antitumorigenic and
cytotoxic properties of an ethanol extract from Rhus
verniciflua Stokes (RVS). J Toxicol Environ Health A.
64:357–371. 2001. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kim SA, Kim SH, Kim IS, Lee D, Dong MS, Na
CS, Nhiem X and Yoo HH: Simultaneous determination of bioactive
phenolic compounds in the stem extract of Rhus verniciflua
stokes by high performance liquid chromatography. Food Chem.
141:3813–3819. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Badhani B, Sharma N and Kakkar R: Gallic
acid: A versatile antioxidant with promising therapeutic and
industrial applications. RSC Advances. 5:27540–27557. 2015.
View Article : Google Scholar
|
22
|
Choi YJ, Do GM, Shin JH, Kim JY and Kwon
O: Standardized Rhus verniciflua stokes extract and its
major flavonoid fustin attenuate oxidative stress induced by
tert-butyl hydroperoxide via activation of nuclear factor erythroid
2-related factor. J Korean Soc Appl Biol Chem. 57:27–30. 2014.
View Article : Google Scholar
|
23
|
Lee DS, Kim KS, Ko W, Li B, Jeong GS, Jang
JH, Oh H and Kim YC: The cytoprotective effect of sulfuretin
against tert-Butyl hydroperoxide-induced hepatotoxicity through
Nrf2/ARE and JNK/ERK MAPK-mediated heme oxygenase-1 expression. Int
J Mol Sci. 15:8863–8877. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Serobatse KRN and Kabanda MM: Antioxidant
and antimalarial properties of butein and homobutein based on their
ability to chelate iron (II and III) cations: A DFT study in vacuo
and in solution. Eur Food Res Technol. 242:71–90. 2016. View Article : Google Scholar
|
25
|
Kiliç I and Yeşiloğlu Y: Spectroscopic
studies on the antioxidant activity of p-coumaric acid. Spectrochim
Acta A Mol Biomol Spectrosc. 115:719–724. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lee SE, Jeong SI, Yang H, Park CS, Jin YH
and Park YS: Fisetin induces Nrf2-mediated HO-1 expression through
PKC-δ and p38 in human umbilical vein endothelial cells. J Cell
Biochem. 112:2352–2360. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pandurangan AK, Mohebali N, Norhaizan ME
and Looi CY: Gallic acid attenuates dextran sulfate sodium-induced
experimental colitis in BALB/c mice. Drug Des Devel Ther.
9:3923–3934. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Gil MN, Choi DR, Yu KS, Jeong JH, Bak DH,
Kim DK, Lee NS, Lee JH, Jeong YG, Na CS, et al: Rhus
verniciflua Stokes attenuates cholestatic liver
cirrhosis-induced interstitial fibrosis via Smad3 down-regulation
and Smad7 up-regulation. Anat Cell Biol. 49:189–198. 2016.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Institute for Laboratory Animal Research
(ILAR): Guide for the care and use of laboratory animals. National
Academy Press; Washington, DC: 2011
|
30
|
Turpaev KT: Reactive oxygen species and
regulation of gene expression. Biochemistry (Mosc). 67:281–292.
2002. View Article : Google Scholar : PubMed/NCBI
|
31
|
Day RM and Suzuki YJ: Cell proliferation,
reactive oxygen and cellular glutathione. Dose Response. 3:425–442.
2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Dixit R and Cyr R: Cell damage and
reactive oxygen species production induced by fluorescence
microscopy: Effect on mitosis and guidelines for non-invasive
fluorescence microscopy. Plant J. 36:280–290. 2003. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sauer H, Wartenberg M and Hescheler J:
Reactive oxygen species as intracellular messengers during cell
growth and differentiation. Cell Physiol Biochem. 11:173–186. 2001.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Nath KA and Norby SM: Reactive oxygen
species and acute renal failure. Am J Med. 109:665–678. 2000.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Liou GY and Storz P: Reactive oxygen
species in cancer. Free Radic Res.
44:2010.10.3109/10715761003667554. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mittal M, Siddiqui MR, Tran K, Reddy SP
and Malik AB: Reactive oxygen species in inflammation and tissue
injury. Antioxid Redox Signal. 20:1126–1167. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Pham-Huy LA, He H and Pham-Huy C: Free
radicals, antioxidants in disease and health. Int J Biomed Sci.
4:89–96. 2008.PubMed/NCBI
|
38
|
Kelly FJ: Use of antioxidants in the
prevention and treatment of disease. J Int Fed Clin Chem. 10:21–23.
1998.PubMed/NCBI
|
39
|
Hu R and Kong AN: Activation of MAP
kinases, apoptosis and nutrigenomics of gene expression elicited by
dietary cancer-prevention compounds. Nutrition. 20:83–88. 2004.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Chang SY, Chen YW, Zhao XP, Chenier I,
Tran S, Sauvé A, Ingelfinger JR and Zhang SL: Catalase prevents
maternal diabetes-induced perinatal programming via the Nrf2-HO-1
defense system. Diabetes. 61:2565–2574. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Motohashi H, Kimura M, Fujita R, Inoue A,
Pan X, Takayama M, Katsuoka F, Aburatani H, Bresnick EH and
Yamamoto M: NF-E2 domination over Nrf2 promotes ROS accumulation
and megakaryocytic maturation. Blood. 115:677–686. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Johnson JA, Johnson DA, Kraft AD, Calkins
MJ, Jakel RJ, Vargas MR and Chen PC: The Nrf2-ARE pathway: An
indicator and modulator of oxidative stress in neurodegeneration.
Ann N Y Acad Sci. 1147:61–69. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Petri S, Körner S and Kiaei M: Nrf2/ARE
signaling pathway: Key mediator in oxidative stress and potential
therapeutic target in ALS. Neurol Res Int. 2012:8780302012.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Yang C, Zhang X, Fan H and Liu Y: Curcumin
upregulates transcription factor Nrf2, HO-1 expression and protects
rat brains against focal ischemia. Brain Res. 1282:133–141. 2009.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Krajka-Kuźniak V, Szaefer H, Stefański T,
Sobiak S, Cichocki M and Baer-Dubowska W: The effect of resveratrol
and its methylthio-derivatives on the Nrf2-ARE pathway in mouse
epidermis and HaCaT keratinocytes. Cell Mol Biol Lett. 19:500–516.
2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Schadich E, Hlaváč J, Volná T, Varanasi L,
Hajdúch M and Džubák P: Effects of ginger phenylpropanoids and
quercetin on Nrf2-ARE pathway in human BJ fibroblasts and HaCaT
keratinocytes. Biomed Res Int. 2016:21732752016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Sahin K, Tuzcu M, Gencoglu H, Dogukan A,
Timurkan M, Sahin N, Aslan A and Kucuk O:
Epigallocatechin-3-gallate activates Nrf2/HO-1 signaling pathway in
cisplatin-induced nephrotoxicity in rats. Life Sci. 87:240–245.
2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kwon SH, Ma SX, Hwang JY, Lee SY and Jang
CG: Involvement of the Nrf2/HO-1 signaling pathway in
sulfuretin-induced protection against amyloid beta25-35
neurotoxicity. Neuroscience. 304:14–28. 2015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Lee DS, Li B, Kim KS, Jeong GS, Kim EC and
Kim YC: Butein protects human dental pulp cells from hydrogen
peroxide-induced oxidative toxicity via Nrf2 pathway-dependent heme
oxygenase-1 expressions. Toxicol In Vitro. 27:874–881. 2013.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Ramesh G and Reeves WB: TNF-alpha mediates
chemokine and cytokine expression and renal injury in cisplatin
nephrotoxicity. J Clin Invest. 110:835–842. 2002. View Article : Google Scholar : PubMed/NCBI
|
51
|
Okyay GU, İnal S, Öneç K, Er RE, Paşaoğlu
O, Paşaoğlu H, Derici U and Erten Y: Neutrophil to lymphocyte ratio
in evaluation of inflammation in patients with chronic kidney
disease. Ren Fail. 35:29–36. 2013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Ip WKE, Hoshi N, Shouval DS, Snapper S and
Medzhitov R: Anti-inflammatory effect of IL-10 mediated by
metabolic reprogramming of macrophages. Science. 356:513–519. 2017.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Flaishon L, Hart G, Zelman E, Moussion C,
Grabovsky V, Lapidot Tal G, Feigelson S, Margalit R, Harmelin A,
Avin-Wittenberg T, et al: Anti-inflammatory effects of an
inflammatory chemokine: CCL2 inhibits lymphocyte homing by
modulation of CCL21-triggered integrin-mediated adhesions. Blood.
112:5016–5025. 2008. View Article : Google Scholar : PubMed/NCBI
|
54
|
Itoh K, Wakabayashi N, Katoh Y, Ishii T,
Igarashi K, Engel JD and Yamamoto M: Keap1 represses nuclear
activation of antioxidant responsive elements by Nrf2 through
binding to the amino-terminal Neh2 domain. Genes Dev. 13:76–86.
1999. View Article : Google Scholar : PubMed/NCBI
|
55
|
Satoh T, Okamoto SI, Cui J, Watanabe Y,
Furuta K, Suzuki M, Tohyama K and Lipton SA: Activation of the
Keap1/Nrf2 pathway for neuroprotection by electrophillic
(correction of electrophillic) phase II inducers. Proc Natl Acad
Sci USA. 103:768–773. 2006. View Article : Google Scholar : PubMed/NCBI
|
56
|
Itoh K, Wakabayashi N, Katoh Y, Ishii T,
O'Connor T and Yamamoto M: Keap1 regulates both cytoplasmic-nuclear
shuttling and degradation of Nrf2 in response to electrophiles.
Genes Cells. 8:379–391. 2003. View Article : Google Scholar : PubMed/NCBI
|