1
|
Mattes J, Collison A, Plank M, Phipps S
and Foster PS: Antagonism of microRNA-126 suppresses the effector
function of TH2 cells and the development of allergic airways
disease. Proc Natl Acad Sci USA. 106:18704–18709. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Stott B, Lavender P, Lehmann S, Pennino D,
Durham S and Schmidt-Weber CB: Human IL-31 is induced by IL-4 and
promotes TH2-driven inflammation. J Allergy Clin Immunol Aug.
132:446–454.e5. 2013. View Article : Google Scholar
|
3
|
Nakajima H and Takatsu K: Role of
cytokines in allergic airway inflammation. Int Arch Allergy
Immunol. 142:265–273. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Barrett NA and Austen KF: Innate cells and
T helper 2 cell immunity in airway inflammation. Immunity.
31:425–437. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Moreira AP, Cavassani KA, Ismailoglu UB,
Hullinger R, Dunleavy MP, Knight DA, Kunkel SL, Uematsu S, Akira S
and Hogaboam CM: The protective role of TLR6 in a mouse model of
asthma is mediated by IL-23 and IL-17A. J Clin Invest.
121:4420–4432. 2011. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Taft RJ, Pang KC, Mercer TR, Dinger M and
Mattick JS: Non-coding RNAs: Regulators of disease. J Pathol.
220:126–139. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Foster PS, Plank M, Collison A, Tay HL,
Kaiko GE, Li J, Johnston SL, Hansbro PM, Kumar RK, Yang M and
Mattes J: The emerging role of microRNAs in regulating immune and
inflammatory responses in the lung. Immunol Rev. 253:198–215. 2013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Deshpande DA, Dileepan M, Walseth TF,
Subramanian S and Kannan MS: MicroRNA regulation of airway
inflammation and airway smooth muscle function: Relevance to
asthma. Drug Dev Res. 76:286–295. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Simpson LJ, Patel S, Bhakta NR, Choy DF,
Brightbill HD, Ren X, Wang Y, Pua HH, Baumjohann D, Montoya MM, et
al: A microRNA upregulated in asthma airway T cells promotes TH2
cytokine production. Nat Immunol Dec. 15:1162–1170. 2014.
View Article : Google Scholar
|
10
|
Brook PO, Perry MM, Adcock IM and Durham
AL: Epigenome-modifying tools in asthma. Epigenomics. 7:1017–1032.
2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Collison A, Herbert C, Siegle JS, Mattes
J, Foster PS and Kumar RK: Altered expression of microRNA in the
airway wall in chronic asthma: miR-126 as a potential therapeutic
target. BMC Pulm Med. 11:292011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Collison A, Mattes J, Plank M and Foster
PS: Inhibition of house dust mite-induced allergic airways disease
by antagonism of microRNA-145 is comparable to glucocorticoid
treatment. J Allergy Clin Immunol. 128:160–167. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li JJ, Tay HL, Maltby S, Xiang Y, Eyers F,
Hatchwell L, Zhou H, Toop HD, Morris JC, Nair P, et al: MicroRNA-9
regulates steroid-resistant airway hyperresponsiveness by reducing
protein phosphatase 2A activity. J Allergy Clin Immunol.
136:462–473. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Calamita Z, Saconato H, Pelá AB and
Atallah AN: Efficacy of sublingual immunotherapy in asthma:
Systematic review of randomized-clinical trials using the cochrane
collaboration method. Allergy. 61:1162–1172. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Compalati E, Braido F and Canonica GW: An
update on allergen immunotherapy and asthma. Curr Opin Pulm Med.
20:109–117. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Moser S, Peroni DG, Comberiati P and
Piacentini GL: Asthma and viruses: Is there a relationship? Front
Biosci (Elite Ed). 6:46–54. 2014.PubMed/NCBI
|
17
|
Metz G and Kraft M: Effects of atypical
infections with Mycoplasma and Chlamydia on asthma. Immunol Allergy
Clin North Am. 30(575–585): vii–viii. 2010.
|
18
|
Kudo M, Ishigatsubo Y and Aoki I:
Pathology of asthma. Front Microbiol. 4:2632013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Assa'ad AH and Rothenberg ME: Eosinophilic
asthma: Insights into the effects of reducing IL-5
receptor-positive cell levels. J Allergy Clin Immunol.
132:1097–1085. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Paliwal R, Babu RJ and Palakurthi S:
Nanomedicine scale-up technologies: Feasibilities and challenges.
AAPS PharmSciTech. 15:1527–1534. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen LS, Wang AX, Dong B, Pu KF, Yuan LH
and Zhu YM: A new prospect in cancer therapy: Targeting cancer stem
cells to eradicate cancer. Chin J Cancer. 31:564–572. 2012.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Winter JM and Tang Y: Synthetic biological
approaches to natural product biosynthesis. Curr Opin Biotechnol.
23:736–743. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Calabrese EJ: Hormesis is central to
toxicology, pharmacology and risk assessment. Hum Exp Toxicol.
29:249–261. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Calabrese EJ: The hormesis concept is the
most fundamental dose-response in the biomedical and toxicological
sciences. Br J Clin Pharmacol. 66:594–617. 2008.PubMed/NCBI
|
25
|
Kirchner B, di Dio PJ and Hutter J:
Real-world predictions from ab initio molecular dynamics
simulations. Top Curr Chem. 307:109–153. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Schrauwers A and Poolman B: Synthetische
Biologie - Der Mensch als Schöpfer? Springer Spektrum; Heidelberg:
2013, View Article : Google Scholar
|
27
|
Melo CA and Melo SA: Biogenesis and
Physiology of MicroRNAsNon-Coding RNAs and Cancer. Fabbri M:
Springer Science+Business Media, LLC; New York, NY: pp. 5–24.
2013
|