1
|
Akesson K: New approaches to
pharmacological treatment of osteoporosis. Bull World Health Organ.
81:657–664. 2003.PubMed/NCBI
|
2
|
Dhanwal DK, Dennison EM, Harvey NC and
Cooper C: Epidemiology of hip fracture: Worldwide geographic
variation. Ind J Orthop. 45:15–22. 2011. View Article : Google Scholar
|
3
|
Drake MT, Clarke BL and Lewiecki EM: The
pathophysiology and treatment of osteoporosis. Clin Ther.
37:1837–1850. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Dalle Carbonare L, Zanatta M, Gasparetto A
and Valenti MT: Safety and tolerability of zoledronic acid and
other bisphosphonates in osteoporosis management. Drug Healthc
Patient Saf. 2:121–137. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rogers MJ, Crockett JC, Coxon FP and
Mönkkönen J: Biochemical and molecular mechanisms of action of
bisphosphonates. Bone. 49:34–41. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Dunford JE, Thompson K, Coxon FP, Luckman
SP, Hahn FM, Poulter CD, Ebetino FH and Rogers MJ:
Structure-activity relationships for inhibition of farnesyl
diphosphate synthase in vitro and inhibition of bone resorption in
vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther.
296:235–242. 2001.PubMed/NCBI
|
7
|
Salzano G, Marra M, Porru M, Zappavigna S,
Abbruzzese A, La Rotonda MI, Leonetti C, Caraglia M and De Rosa G:
Self-assembly nanoparticles for the delivery of bisphosphonates
into tumors. Int J Pharm. 403:292–297. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bellido T and Plotkin LI: Novel actions of
bisphosphonates in bone: Preservation of osteoblast and osteocyte
viability. Bone. 49:50–55. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wei D, Jung J, Yang H, Stout DA and Yang
L: Nanotechnology treatment options for osteoporosis and its
corresponding consequences. Curr Osteoporos Rep. 14:239–247. 2016.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Barry M, Pearce H, Cross L, Tatullo M and
Gaharwar AK: Advances in nanotechnology for the treatment of
osteoporosis. Curr Osteoporos Rep. 14:87–94. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ramasamy T, Ruttala HB, Gupta B, Poudal
BK, Choi HG, Yong CS and Kim JO: Smart chemistry-based nanosized
drug delivery systems for systemic applications: A comprehensive
review. J Control Release. 258:226–253. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Peng H, Liu X, Wang G, Li M, Bratlie KM,
Cochran E and Wang Q: Polymeric multifunctional nanomaterials for
theranostics. J Mater Chem B. 3:6856–6870. 2015. View Article : Google Scholar
|
13
|
Ikoba U, Peng H, Li H, Miller C, Yu C and
Wang Q: Nanocarriers in therapy of infectious and inflammatory
diseases. Nanoscale. 7:4291–4305. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ruttala HB, Ramasamy T, Poudal BK, Choi Y,
Choi JY, Kim J, Ku Kwang S, Choi HG, Soon Yong C and Kim Oh J:
Molecularly targeted co-delivery of a histone deacetylase inhibitor
and paclitaxel by lipid-protein hybrid nanoparticles for
synergistic combinational chemotherapy. Oncotarget. 8:14925–14940.
2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ruttala HB, Ramasamy T, Gupta B, Choi HG,
Yong CS and Kim JO: Multiple polysaccharide-drug complex-loaded
liposomes: A unique strategy in drug loading and cancer targeting.
Carbohydr Polym. 173:57–66. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang Q, Cheng H, Peng H, Zhou H, Li PY and
Langer R: Non-genetic engineering of cells for drug delivery and
cell-based therapy. Adv Drug Deliv Rev. 91:125–140. 2015.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Meng S, Su B, Li W, Ding Y, Tang L, Zhou
W, Song Y and Caicun Z: Integrin-targeted paclitaxel nanoliposomes
for tumor therapy. Med Oncol. 28:1180–1187. 2011. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ruttala HB, Ramasamy T, Shin BS, Choi HG,
Yong CS and Kim JO: Layer-by-layer assembly of hierarchical
nanoarchitectures to enhance the systemic performance of
nanoparticle albumin-bound paclitaxel. Int J Pharm. 519:11–21.
2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Xu Q, Tanaka Y and Czernuszka JT:
Encapsulation and release of a hydrophobic drug from hydroxyapatite
coated liposomes. Biomaterials. 28:2687–2694. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Venkatesan P, Puvvada N, Dash R, Kumar
Prashanth BN, Sarkar D, Azab B, Pathak A, Kundu SC, Fisher PB and
Mandal M: The potential of celecoxib-loaded hydroxyapatite-chitosan
nanocomposite for the treatment of colon cancer. Biomaterials.
32:3794–3806. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Iafisco M, Ruffini A, Adamiano A, Sprio S
and Tampieri A: Biomimetic magnesium-carbonate-apatite nanocrystals
endowed with strontium ions as anti-osteoporotic trigger. Mater Sci
Eng C Mater Biol Appl. 35:212–219. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pilia M, Guda T and Appleford M:
Development of composite scaffolds for load-bearing segmental bone
defects. BioMed Res Int. 2013:4582532013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lü LX, Zhang XF, Wang YY, Ortiz L, Mao X,
Jiang ZL, Xiao ZD and Huang NP: Effects of
hydroxyapatite-containing composite nanofibers on osteogenesis of
mesenchymal stem cells in vitro and bone regeneration in vivo. ACS
Appl Mater Interfaces. 5:319–330. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jueng H, Sung KC, Eun SP, Kun H, Hee DH
and Byung CS: Enhanced stability of hydroxyapatite-coated liposomes
for ultrasound-triggered drug release. Bull Korean Chem Soc.
36:83–87. 2015. View Article : Google Scholar
|
25
|
Yewle JN, Puleo DA and Bachas LG: Enhanced
affinity bifunctional bisphosphonates for targeted delivery of
therapeutic agents to bone. Bioconjug Chem. 22:2496–2506. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang D, Miller S, Sima M, Kopecková P and
Kopecek J: Synthesis and evaluation of water-soluble polymeric
bone-targeted drug delivery systems. Bioconjug Chem. 14:853–859.
2003. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cummings SR and Melton LJ: Epidemiology
and outcomes of osteoporotic fractures. Lancet. 359:1761–1767.
2002. View Article : Google Scholar : PubMed/NCBI
|
28
|
Nishikawa M, Akatsu T, Katayama Y,
Yasutomo Y, Kado S, Kugal N, Yamamoto M and Nagata N:
Bisphosphonates act on osteoblastic cells and inhibit osteoclast
formation in mouse marrow cultures. Bone. 18:9–14. 1996. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gaspar MM, Gobbo O and Ehrhardt C:
Generation of liposome aerosols with the Aeroneb Pro and the
AeroProbe nebulizers. J Liposome Res. 20:55–61. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Dunford JE, Rogers MJ, Ebetino FH, Phipps
RJ and Coxon FP: Inhibition of protein prenylation by
bisphosphonates causes sustained activation of Rac, Cdc42, and Rho
GTPases. J Bone Miner Res. 21:684–694. 2006. View Article : Google Scholar : PubMed/NCBI
|