1
|
Furumatsu T, Shimamura Y and Nishida K:
Analysis of musculoskeletal systems and their diseases. Pathology
and treatment for injuries of the tendon and ligament. Clin
Calcium. 25:1205–1211. 2015.PubMed/NCBI
|
2
|
Omae H, Sun YL, An KN, Amadio PC and Zhao
C: Engineered tendon with decellularized xenotendon slices and bone
marrow stromal cells: An in vivo animal study. J Tissue Eng Regen
Med. 6:238–244. 2012. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Gaspar D, Spanoudes K, Holladay C, Pandit
A and Zeugolis D: Progress in cell-based therapies for tendon
repair. Adv Drug Deliv Rev. 84:240–256. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hankemeier S, Keus M, Zeichen J,
Jagodzinski M, Barkhausen T, Bosch U, Krettek C and Van Griensven
M: Modulation of proliferation and differentiation of human bone
marrow stromal cells by fibroblast growth factor 2: Potential
implications for tissue engineering of tendons and ligaments.
Tissue Eng. 11:41–49. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen HS, Chen YL, Harn HJ, Lin JS and Lin
SZ: Stem cell therapy for tendon injury. Cell Transplant.
22:677–684. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhao C, Chieh HF, Bakri K, Ikeda J, Sun
YL, Moran SL, An KN and Amadio PC: The effects of bone marrow
stromal cell transplants on tendon healing in vitro. Med Eng Phys.
31:1271–1275. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yin Z, Guo J, Wu TY, Chen X, Xu LL, Lin
SE, Sun YX, Chan KM, Ouyang H and Li G: Stepwise differentiation of
mesenchymal stem cells augments tendon-like tissue formation and
defect repair in vivo. Stem Cells Transl Med. 5:1106–1116. 2016.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Hotten GC, Matsumoto T, Kimura M, Bechtold
RF, Kron R, Ohara T, Tanaka H, Satoh Y, Okazaki M, Shirai T, et al:
Recombinant human growth/differentiation factor 5 stimulates
mesenchyme aggregation and chondrogenesis responsible for the
skeletal development of limbs. Growth Factors. 13:65–74. 1996.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Rickert M, Wang H, Wieloch P, Lorenz H,
Steck E, Sabo D and Richter W: Adenovirus-mediated gene transfer of
growth and differentiation factor-5 into tenocytes and the healing
rat Achilles tendon. Connect Tissue Res. 46:175–183. 2005.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Shen H, Gelberman RH, Silva MJ,
Sakiyama-Elbert SE and Thomopoulos S: BMP12 induces tenogenic
differentiation of adipose-derived stromal cells. PLoS One.
8:e776132013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Nochi H, Sung JH, Lou J, Adkisson HD,
Maloney WJ and Hruska KA: Adenovirus mediated BMP-13 gene transfer
induces chondrogenic differentiation of murine mesenchymal
progenitor cells. J Bone Miner Res. 19:111–122. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Rickert M: BMP-14 gene therapy increases
tendon tensile strength in a rat model of achilles tendon injury. J
Bone Joint Surg Am. 90:445–446. 2008.PubMed/NCBI
|
13
|
Ozasa Y, Gingery A, Thoreson AR, An KN,
Zhao C and Amadio PC: A comparative study of the effects of growth
and differentiation factor 5 on muscle-derived stem cells and bone
marrow stromal cells in an in vitro tendon healing model. J Hand
Surg Am. 39:1706–1713. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hayashi M, Zhao C, An KN and Amadio PC:
The effects of growth and differentiation factor 5 on bone marrow
stromal cell transplants in an in vitro tendon healing model. J
Hand Surg Eur Vol. 36:271–279. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Qu Y, Zhang J, Wu S, Li B, Liu S and Cheng
J: SIRT1 promotes proliferation and inhibits apoptosis of human
malignant glioma cell lines. Neurosci Lett. 525:168–172. 2012.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Takeda-Watanabe A, Kitada M, Kanasaki K
and Koya D: SIRT1 inactivation induces inflammation through the
dysregulation of autophagy in human THP-1 cells. Biochem Biophys
Res Commun. 427:191–196. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Park SY, Lee SW, Kim HY, Lee SY, Lee WS,
Hong KW and Kim CD: SIRT1 inhibits differentiation of monocytes to
macrophages: Amelioration of synovial inflammation in rheumatoid
arthritis. J Mol Med (Berl). 94:921–931. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Buhrmann C, Busch F, Shayan P and
Shakibaei M: Sirtuin-1 (SIRT1) is required for promoting
chondrogenic differentiation of mesenchymal stem cells. J Biol
Chem. 289:22048–22062. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Joe IS, Jeong SG and Cho GW:
Resveratrol-induced SIRT1 activation promotes neuronal
differentiation of human bone marrow mesenchymal stem cells.
Neurosci Lett. 584:97–102. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen Q, Lu H and Yang H: Chitosan prevents
adhesion during rabbit flexor tendon repair via the sirtuin 1
signaling pathway. Mol Med Rep. 12:4598–4603. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cao C, Lu S, Kivlin R, Wallin B, Card E,
Bagdasarian A, Tamakloe T, Wang WJ, Song X, Chu WM, et al: SIRT1
confers protection against UVB- and H2O2-induced cell death via
modulation of p53 and JNK in cultured skin keratinocytes. J Cell
Mol Med. 13:3632–3643. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zerr P, Palumbo-Zerr K, Huang J, Tomcik M,
Sumova B, Distler O, Schett G and Distler JH: Sirt1 regulates
canonical TGF-β signalling to control fibroblast activation and
tissue fibrosis. Ann Rheum Dis. 75:226–233. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen W, Zhang L, Shao SX, Wang HP, Cui SJ,
Zhang YN, Kong XZ, Yin Q and Zhang JP: Transcription factors GATA4
and TBX5 promote cardiomyogenic differentiation of rat bone marrow
mesenchymal stromal cells. Histol Histopathol. 30:1487–1498.
2015.PubMed/NCBI
|
24
|
Li ZW, Piao CD, Sun HH, Ren XS and Bai YS:
Asiatic acid inhibits adipogenic differentiation of bone marrow
stromal cells. Cell Biochem Biophys. 68:437–442. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Modica S and Moschetta A: Nuclear bile
acid receptor FXR as pharmacological target: Are we there yet? FEBS
Lett. 580:5492–5499. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Boufker Id H, Lagneaux L, Fayyad-Kazan H,
Badran B, Najar M, Wiedig M, Ghanem G, Laurent G, Body JJ and
Journé F: Role of farnesoid X receptor (FXR) in the process of
differentiation of bone marrow stromal cells into osteoblasts.
Bone. 49:1219–1231. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Evans RM: The steroid and thyroid hormone
receptor superfamily. Science. 240:889–895. 1988. View Article : Google Scholar : PubMed/NCBI
|
28
|
Jia S, Liu X, Li W, Xie J, Yang L and Li
L: Peroxisome proliferator-activated receptor gamma negatively
regulates the differentiation of bone marrow-derived mesenchymal
stem cells toward myofibroblasts in liver fibrogenesis. Cell
Physiol Biochem. 37:2085–2100. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Evans JF, Rodriguez S and Ragolia L: ACTH
promotes chondrogenic nodule formation and induces transient
elevations in intracellular calcium in rat bone marrow cell
cultures via MC2-R signaling. Cell Tissue Res. 352:413–425. 2013.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Jin M, Chen Y, Zhou Y, Mei Y, Liu W, Pan C
and Hua X: Transplantation of bone marrow-derived mesenchymal stem
cells expressing elastin alleviates pelvic floor dysfunction. Stem
Cell Res Ther. 7:512016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Andersen CL, Jensen JL and Ørntoft TF:
Normalization of real-time quantitative reverse transcription-PCR
data: A model-based variance estimation approach to identify genes
suited for normalization, applied to bladder and colon cancer data
sets. Cancer Res. 64:5245–5250. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Méndez-Ferrer S, Michurina TV, Ferraro F,
Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma'ayan A,
Enikolopov GN and Frenette PS: Mesenchymal and haematopoietic stem
cells form a unique bone marrow niche. Nature. 466:829–834. 2010.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Guo KT, SchAfer R, Paul A, Gerber A,
Ziemer G and Wendel HP: A new technique for the isolation and
surface immobilization of mesenchymal stem cells from whole bone
marrow using high-specific DNA aptamers. Stem Cells. 24:2220–2231.
2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Schweitzer R, Chyung JH, Murtaugh LC,
Brent AE, Rosen V, Olson EN, Lassar A and Tabin CJ: Analysis of the
tendon cell fate using Scleraxis, a specific marker for tendons and
ligaments. Development. 128:3855–3866. 2001.PubMed/NCBI
|
35
|
Shukunami C, Takimoto A, Oro M and Hiraki
Y: Scleraxis positively regulates the expression of tenomodulin, a
differentiation marker of tenocytes. Dev Biol. 298:234–247. 2006.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Docheva D, Hunziker EB, Fässler R and
Brandau O: Tenomodulin is necessary for tenocyte proliferation and
tendon maturation. Mol Cell Biol. 25:699–705. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Muraglia A, Cancedda R and Quarto R:
Clonal mesenchymal progenitors from human bone marrow differentiate
in vitro according to a hierarchical model. J Cell Sci.
113:1161–1166. 2000.PubMed/NCBI
|
38
|
Qiang L, Wang L, Kon N, Zhao W, Lee S,
Zhang Y, Rosenbaum M, Zhao Y, Gu W, Farmer SR and Accili D: Brown
remodeling of white adipose tissue by SirT1-dependent deacetylation
of Pparγ. Cell. 150:620–632. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yoshida Y, Tanaka S, Umemori H, Minowa O,
Usui M, Ikematsu N, Hosoda E, Imamura T, Kuno J, Yamashita T, et
al: Negative regulation of BMP/Smad signaling by Tob in
osteoblasts. Cell. 103:1085–1097. 2000. View Article : Google Scholar : PubMed/NCBI
|
40
|
Celil AB and Campbell PG: BMP-2 and
insulin-like growth factor-I mediate Osterix (Osx) expression in
human mesenchymal stem cells via the MAPK and protein kinase D
signaling pathways. J Biol Chem. 280:31353–31359. 2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Rodeo SA, Sugiguchi F, Fortier LA,
Cunningham ME and Maher S: What's new in orthopaedic research. J
Bone Joint Surg Am. 96:2015–2019. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kan A, Ikeda T, Fukai A, Nakagawa T,
Nakamura K, Chung UI, Kawaguchi H and Tabin CJ: SOX11 contributes
to the regulation of GDF5 in joint maintenance. BMC Dev Biol.
13:42013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kadomatsu H, Matsuyama T, Yoshimoto T,
Negishi Y, Sekiya H, Yamamoto M and Izumi Y: Injectable
growth/differentiation factor-5-recombinant human collagen
composite induces endochondral ossification via Sry-related HMG box
9 (Sox9)expression and angiogenesis in murine calvariae. J
Periodontal Res. 43:483–489. 2008.PubMed/NCBI
|
44
|
Oshin AO, Caporali E, Byron CR, Stewart AA
and Stewart MC: Phenotypic maintenance of articular chondrocytes in
vitro requires BMP activity. Vet Comp Orthop Traumatol. 20:185–191.
2007. View Article : Google Scholar : PubMed/NCBI
|
45
|
Aspenberg P: Stimulation of tendon repair:
Mechanical loading, GDFs and platelets. A mini-review. Int Orthop.
31:783–789. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Hinoi E, Nakamura Y, Takada S, Fujita H,
Iezaki T, Hashizume S, Takahashi S, Odaka Y, Watanabe T and Yoneda
Y: Growth differentiation factor-5 promotes brown adipogenesis in
systemic energy expenditure. Diabetes. 63:162–175. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Guzman A, Zelman-Femiak M, Boergermann JH,
Paschkowsky S, Kreuzaler PA, Fratzl P, Harms GS and Knaus P: SMAD
versus non-SMAD signaling is determined by lateral mobility of bone
morphogenetic protein (BMP) receptors. J Biol Chem.
287:39492–39504. 2012. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sieber C, Kopf J, Hiepen KC and Knaus P:
Recent advances in BMP receptor signaling. Cytokine & Growth
Factor Reviews. 20:343–355. 2009. View Article : Google Scholar
|
49
|
Becatti M, Fiorillo C, Barygina V, Cecchi
C, Lotti T, Prignano F, Silvestro A, Nassi P and Taddei N: SIRT1
regulates MAPK pathways in vitiligo skin: insight into the
molecular pathways of cell survival. J Cell Mol Med. 18:514–529.
2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Gao P, Xu TT, Lu J, Li L, Xu J, Hao DL,
Chen HZ and Liu DP: Overexpression of SIRT1 in vascular smooth
muscle cells attenuates angiotensin II-induced vascular remodeling
and hypertension in mice. J Mol Med (Berl). 92:347–357. 2014.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Wang H, Kroeber M, Hanke M, Ries R, Schmid
C, Poller W and Richter W: Release of active and depot GDF-5 after
adenovirus-mediated overexpression stimulates rabbit and human
intervertebral disc cells. J Mol Med (Berl). 82:126–134. 2004.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Cucchiarini M and Madry H: Overexpression
of human IGF-I via direct rAAV-mediated gene transfer improves the
early repair of articular cartilage defects in vivo. Gene Ther.
21:811–819. 2014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Tekari A, Luginbuehl R, Hofstetter W and
Egli RJ: Transforming growth factor beta signaling is essential for
the autonomous formation of cartilage-like tissue by expanded
chondrocytes. PLoS One. 10:e01208572015. View Article : Google Scholar : PubMed/NCBI
|
54
|
Murphy MK, Huey DJ, Hu JC and Athanasiou
KA: TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in
expanded human articular chondrocytes and marrow-derived stromal
cells. Stem Cells. 33:762–773. 2015. View Article : Google Scholar : PubMed/NCBI
|
55
|
Solursh M: Cell-cell interactions and
chondrogenesisCartilage: Development, Differentiation, and Growth.
Hall BK: 2. Academic Press; New York, NY: pp. 121–141. 1983
|