1
|
Pensak MJ and Lieberman JR: Gene therapy
for bone regeneration. Curr Pharm Des. 19:3466–3473. 2013.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Thor A, Palmquist A, Hirsch JM, Rännar LE,
Dérand P and Omar O: Clinical, morphological, and molecular
evaluations of bone regeneration with an additive manufactured
osteosynthesis plate. J Craniofac Surg. 27:1899–1904. 2016.
View Article : Google Scholar : PubMed/NCBI
|
3
|
D'Mello S, Atluri K, Geary SM, Hong L,
Elangovan S and Salem AK: Bone regeneration using Gene-Activated
matrices. AAPS J. 19:43–53. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kristjánsson B and Honsawek S: Mesenchymal
stem cells for cartilage regeneration in osteoarthritis. World J
Orthop. 8:674–680. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Roura S, Gálvez-Montón C, Mirabel C, Vives
J and Bayes-Genis A: Mesenchymal stem cells for cardiac repair: Are
the actors ready for the clinical scenario? Stem Cell Res Ther.
8:2382017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Manatsathit W, Samant H and
Nakayuenyongsuk W: Mesenchymal stem cells for hepatitis B patients
with acute on chronic liver failure-are we there? Hepatology.
66:1705–1706. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Moreira A, Kahlenberg S and Hornsby P:
Therapeutic potential of mesenchymal stem cells for diabetes. J Mol
Endocrinol. 59:R109–R120. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ding SLS, Kumar S and Mok PL: Cellular
reparative mechanisms of mesenchymal stem cells for retinal
diseases. Int J Mol Sci. 18:pii: E1406. 2017. View Article : Google Scholar
|
9
|
Roskies MG, Fang D, Abdallah MN,
Charbonneau AM, Cohen N, Jordan JO, Hier MP, Mlynarek A, Tamimi F
and Tran SD: Three-dimensionally printed polyetherketoneketone
scaffolds with mesenchymal stem cells for the reconstruction of
critical-sized mandibular defects. Laryngoscope. 127:E392–E398.
2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Razmkhah M, Mansourabadi Z, Mohtasebi MA,
Talei AR and Ghaderi A: Cancer and normal adipose-derived
mesenchymal stem cells (ASCs): Do they have differential effects on
tumor and immune cells? Cell Biol Int. 42:334–343. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Carstens MH, Mendieta M, Pérez C,
Villareal E and Garcia R: Assisted salvage of ischemic
fasciocutaneous flap using Adipose-Derived mesenchymal stem cells:
In-Situ revascularization. Aesthet Surg J. 37 Suppl 3:S38–S45.
2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gao W, Zhang L, Zhang Y, Sun C, Chen X and
Wang Y: Adipose-derived mesenchymal stem cells promote liver
regeneration and suppress rejection in small-for-size liver
allograft. Transpl Immunol. 45:1–7. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Calabrese G, Giuffrida R, Forte S, Fabbi
C, Figallo E, Salvatorelli L, Memeo L, Parenti R, Gulisano M and
Gulino R: Human adipose-derived mesenchymal stem cells seeded into
a collagen-hydroxyapatite scaffold promote bone augmentation after
implantation in the mouse. Sci Rep. 7:71102017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dennis GJ Jr, Sherman BT, Hosack DA, Yang
J, Gao W, Lane HC and Lempicki RA: DAVID: Database for annotation,
visualization, and integrated discovery. Genome Biol. 4:P32003.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Sun C, Yuan Q, Wu D, Meng X and Wang B:
Identification of core genes and outcome in gastric cancer using
bioinformatics analysis. Oncotarget. 8:70271–70280. 2017.PubMed/NCBI
|
18
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Chu H, Jia B, Qiu X, Pan J, Sun X, Wang Z
and Zhao J: Investigation of proliferation and migration of tongue
squamous cell carcinoma promoted by three chemokines, MIP-3α,
MIP-1β, and IP-10. Oncotargets Ther. 10:4193–4203. 2017. View Article : Google Scholar
|
21
|
He BC, Chen L, Zuo GW, Zhang W, Bi Y,
Huang J, Wang Y, Jiang W, Luo Q, Shi Q, et al: Synergistic
antitumor effect of the activated PPARgamma and retinoid receptors
on human osteosarcoma. Clin Cancer Res. 16:2235–2245. 2010.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Aubin JE: Regulation of osteoblast
formation and function. Rev Endocr Metab Disord. 2:81–94. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Deng ZL, Sharff KA, Tang N, Song WX, Luo
J, Luo X, Chen J, Bennett E, Reid R, Manning D, et al: Regulation
of osteogenic differentiation during skeletal development. Front
Biosci. 13:2001–2021. 2008. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Wagner ER, He BC, Chen L, Zuo GW, Zhang W,
Shi Q, Luo Q, Luo X, Liu B, Luo J, et al: Therapeutic implications
of PPARgamma in human osteosarcoma. PPAR RES. 2010:9564272010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Tang N, Song WX, Luo J, Haydon RC and He
TC: Osteosarcoma development and stem cell differentiation. Clin
Orthop Relat Res. 466:2114–2130. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhao W, Wang D, Zhao J and Zhao W:
Bioinformatic analysis of retinal gene function and expression in
diabetic rats. Exp Ther Med. 14:2485–2492. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Koehler AV, Korhonen PK, Hall RS, Young
ND, Wang T, Haydon SR and Gasser RB: Use of a
bioinformatic-assisted primer design strategy to establish a new
nested PCR-based method for Cryptosporidium. Parasit Vectors.
10:5092017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang C, Chen Y, Mao X, Huang Y, Jung SY,
Jain A, Qin J and Wang Y: A bioinformatic algorithm for analyzing
cell signaling using temporal proteomic data. Proteomics.
17:2017.doi: 10.1002/pmic.201600425. View Article : Google Scholar
|
29
|
Tsukanov KY, Krasnenko AY, Plakhina DA,
Korostin DO, Churov AV, Druzhilovskaya OS, Rebrikov DV and Ilinsky
VV: A bioinformatic pipeline for NGS data analysis and mutation
calling in human solid tumors. Biomed Khim. 63:413–417. 2017.(In
Russian). View Article : Google Scholar : PubMed/NCBI
|
30
|
Irwandi RA and Vacharaksa A: The role of
microRNA in periodontal tissue: A review of the literature. Arch
Oral Biol. 72:66–74. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM
and Zhang GZ: Biological functions of microRNAs: A review. J
Physiol Biochem. 67:129–139. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hamidi-Asl E, Palchetti I, Hasheminejad E
and Mascini M: A review on the electrochemical biosensors for
determination of microRNAs. Talanta. 115:74–83. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Jia HY, Chen F, Chen JZ, Wu SS, Wang J,
Cao QY, Chen Z and Zhu HH: MicroRNA expression profiles related to
early stage murine concanavalin A-induced hepatitis. Cell Physiol
Biochem. 33:1933–1944. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Khraiwesh B, Zhu JK and Zhu J: Role of
miRNAs and siRNAs in biotic and abiotic stress responses of plants.
Biochim Biophys Acta. 1819:137–148. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
van Wijnen AJ, van de Peppel J, van
Leeuwen JP, Lian JB, Stein GS, Westendorf JJ, Oursler MJ, Im HJ,
Taipaleenmäki H, Hesse E, et al: MicroRNA functions in osteogenesis
and dysfunctions in osteoporosis. Curr Osteoporos Rep. 11:72–82.
2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Song C, Zhang J, Liu Y, Pan H, Qi HP, Cao
YG, Zhao JM, Li S, Guo J, Sun HL and Li CQ: Construction and
analysis of cardiac hypertrophy-associated lncRNA-mRNA network
based on competitive endogenous RNA reveal functional lncRNAs in
cardiac hypertrophy. Oncotarget. 7:10827–10840. 2016.PubMed/NCBI
|
37
|
Wu Q, Guo L, Jiang F, Li L, Li Z and Chen
F: Analysis of the miRNA-mRNA-lncRNA networks in ER+ and ER-breast
cancer cell lines. J Cell Mol Med. 19:2874–2887. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kanehisa M and Goto S: KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30.
2000. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kanehisa M: Enzyme annotation and
metabolic reconstruction using KEGG. Methods Mol Biol.
1611:135–145. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kanehisa M, Furumichi M, Tanabe M, Sato Y
and Morishima K: KEGG: New perspectives on genomes, pathways,
diseases and drugs. Nucleic Acids Res. 45(D1): D353–D361. 2017.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Wu Y, Zhou J, Li Y, Zhou Y, Cui Y, Yang G
and Hong Y: Rap1A regulates osteoblastic differentiation via the
ERK and p38 mediated signaling. PLoS One. 10:e1437772015.
View Article : Google Scholar
|
42
|
Wu M, Chen G and Li YP: TGF-β and BMP
signaling in osteoblast, skeletal development, and bone formation,
homeostasis and disease. Bone Res. 4:160092016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
44
|
He L and Hannon GJ: MicroRNAs: Small RNAs
with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Shen X, Zhang Y, Wu X, Guo Y, Shi W, Qi J,
Cong H, Wang X, Wu X and Ju S: Upregulated lncRNA-PCAT1 is closely
related to clinical diagnosis of multiple myeloma as a predictive
biomarker in serum. Cancer Biomark. 18:257–263. 1017. View Article : Google Scholar
|
46
|
Li X, Chai W, Zhang G, Ni M, Chen J, Dong
J, Zhou Y, Hao L, Bai Y and Wang Y: Down-Regulation of
lncRNA-AK001085 and its influences on the diagnosis of ankylosing
spondylitis. Med Sci Monit. 23:11–16. 2017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Tang H, Wu Z, Zhang J and Su B: Salivary
lncRNA as a potential marker for oral squamous cell carcinoma
diagnosis. Mol Med Rep. 7:761–766. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhou M, Diao Z, Yue X, Chen Y, Zhao H,
Cheng L and Sun J: Construction and analysis of dysregulated
lncRNA-associated ceRNA network identified novel lncRNA biomarkers
for early diagnosis of human pancreatic cancer. Oncotarget.
7:56383–56394. 2016.PubMed/NCBI
|
49
|
Zhang Y, Xu Y, Feng L, Li F, Sun Z, Wu T,
Shi X, Li J and Li X: Comprehensive characterization of lncRNA-mRNA
related ceRNA network across 12 major cancers. Oncotarget.
7:64148–64167. 2016.PubMed/NCBI
|
50
|
Cao Y, Wang P, Ning S, Xiao W, Xiao B and
Li X: Identification of prognostic biomarkers in glioblastoma using
a long non-coding RNA-mediated, competitive endogenous RNA network.
Oncotarget. 7:41737–41747. 2016. View Article : Google Scholar : PubMed/NCBI
|