1
|
Bei YY, Chen XY, Liu Y, Xu JY, Wang WJ, Gu
ZL, Xing KL, Zhu AJ, Chen WL, Shi LS, et al: Novel
norcantharidin-loaded liver targeting chitosan nanoparticles to
enhance intestinal absorption. Int J Nanomedicine. 7:1819–1827.
2012.PubMed/NCBI
|
2
|
Chen YC, Chang SC, Wu MH, Chuang KA, Wu
JY, Tsai WJ and Kuo YC: Norcantharidin reducedcyclins and cytokines
production in human peripheral blood mononuclearcells. Life Sci.
84:218–226. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wei CM, Wang BJ, Ma Y, Sun ZP, Li XL and
Guo RC: Pharmacokinetics and biodistributionof 3H-norcantharidin in
mice. Yao Xue Xue Bao. 42:516–519. 2007.(In Chinese). PubMed/NCBI
|
4
|
Chen YN, Chen JC, Yin SC, Wang GS, Tsauer
W, Hsu SF and Hsu SL: Effect ormechanisms of norcantharidin-induced
mitotic arrest and apoptosis inhuman hepatoma cells. Int J Cancer.
100:158–165. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
McCluskey A and Sakoff JA: Small molecule
inhibitors of serine/threonine protein phosphatases. Mini Rev Med
Chem. 1:43–55. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zheng LC, Yang MD, Kuo CL, Lin CH, Fan MJ,
Chou YC, Lu HF, Huang WW, Peng SF and Chung JG:
Norcantharidin-induced apoptosis of ags human gastric cancer cells
through reactive oxygen species production, and caspase- and
mitochondria-dependent signaling pathways. Anticancer Res.
36:6031–6042. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang S, Li G, Ma X, Wang Y, Liu G, Feng
L, Zhao Y, Zhang G, Wu Y, Ye X, et al: Norcantharidin enhances
ABT-737-induced apoptosis in hepatocellular carcinoma cells by
transcriptional repression of Mcl-1. Cell Signal. 24:1803–1809.
2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wan XY, Zhai XF, Jiang YP, Han T, Zhang QY
and Xin HL: Antimetastatic effects of norcantharidin on
hepatocellular carcinoma cells by up-regulating FAM46C expression.
Am J Transl Res. 9:155–166. 2017.PubMed/NCBI
|
9
|
Xiong X, Wu M, Zhang H, Li J, Lu B, Guo Y,
Zhou T, Guo H, Peng R, Li X, et al: Atg5 siRNA inhibits autophagy
and enhances norcantharidin-induced apoptosis in hepatocellular
carcinoma. Int J Oncol. 47:1321–1328. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lin X, Zhang B, Zhang K, Zhang Y, Wang J,
Qi N, Yang S, He H and Tang X: Preclinical evaluations of
norcantharidin-loaded intravenous lipid microspheres with low
toxicity. Expert Opin Drug Deliv. 9:1449–1462. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Xie J, Zhang Y, Hu X, Lv R, Xiao D, Jiang
L and Bao Q: Norcantharidin inhibits Wnt signal pathway via
promoter demethylation of WIF-1 in human non-small cell lung
cancer. Med Oncol. 32:1452015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liu MC, Liu L, Wang XR, Shuai WP, Hu Y,
Han M and Gao JQ: Folate receptor-targeted liposomes loaded with a
diacid metabolite of norcantharidin enhance antitumor potency for
H22 hepatocellular carcinoma both in vitro and in vivo. Int J
Nanomedicine. 11:1395–1412. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zeng Q and Sun M:
Poly(lactide-co-glycolide) nanoparticles as carriers for
norcantharidin. Materials Science and Engineering: C. 29:708–713.
2009. View Article : Google Scholar
|
14
|
Ding XY, Hong CJ, Liu Y, Gu ZL, Xing KL,
Zhu AJ, Chen WL, Shi LS, Zhang XN and Zhang Q: Pharmacokinetics,
tissue distribution, and metabolites of a
polyvinylpyrrolidone-coated norcantharidin chitosan nanoparticle
formulation in rats and mice, using LC-MS/MS. Int J Nanomedicine.
7:1723–1735. 2012.PubMed/NCBI
|
15
|
Yan D, Ni LK, Chen HL, Chen LC, Chen YH
and Cheng CC: Amphiphilic nanoparticles of
resveratrol-norcantharidin to enhance the toxicity in zebrafish
embryo. Bioorg Med Chem Lett. 26:774–777. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ding XY, Hong CJ and Zhou X: Mechanism of
Polyvinylpyrrolidone-coated norcantharidin chitosan nanoparticle.
Current Nanoscience. 9:401–406. 2013. View Article : Google Scholar
|
17
|
Torchilin VP: Recent advances with
liposomes as pharmaceutical carriers. Nat Rev Drug Discov.
4:145–160. 2005. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Bangham AD, Standish MM and Watkins JC:
Diffusion of univalent ions across the lamellae of swollen
phospholipids. J Mol Biol. 13:238–252. 1965. View Article : Google Scholar : PubMed/NCBI
|
19
|
Irie T, Watarai S and Kodama H: Humoral
immune response of carp (Cyprinus carpio) induced by oral
immunization with liposome-entrapped antigen. Dev Comp Immunol.
27:413–421. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kirby C, Clarke J and Gregoriadis G:
Effect of the cholesterol content of small unilamellar liposomes on
their Stability in vivo and in vitro. Biochem J. 186:591–598. 1980.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang L, Gu FX, Chan JM, Wang AZ, Langer
RS and Farokhzad OC: Nanoparticles in medicine: Therapeutic
applications and developments. Clin Pharmacol Ther. 83:761–769.
2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ara MN, Matsuda T, Hyodo M, Sakurai Y,
Hatakeyama H, Ohga N, Hida K and Harashima H: An aptamer ligand
based liposomal nanocarrier system that targets tumor endothelial
cells. Biomaterials. 35:7110–7120. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kang H, O'Donoghue MB, Liu H and Tan W: A
liposome-based nanostructure for aptamer directed delivery. Chem
Commun (Camb). 46:249–251. 2010. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Moghimi SM, Hunter AC and Murray JC:
Long-circulating andtarget-specific nanoparticles: Theory to
practice. Pharmacol Rev. 53:283–318. 2001.PubMed/NCBI
|
25
|
Maeda H: Tumor-selective delivery of
macromolecular drugs via the EPReffect: Background and future
prospects. Bioconjug Chem. 21:797–802. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kibria G, Hatakeyama H, Ohga N, Hida K and
Harashima H: Dual-ligand modification of PEGylated liposomes shows
better cell selectivity and efficient gene delivery. J Control
Release. 153:141–148. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Darvishi B, Manoochehri S,
Esfandyari-Manesh M, Samadi N, Amini M, Atyabi F and Dinarvand R:
Enhanced cellular cytotoxicity and antibacterial activity of
18-β-Glycyrrhetinic Acidby Albumin-conjugated PLGA Nanoparticles.
Drug Res. 65:617–623. 2015. View Article : Google Scholar
|
28
|
Kuang P, Zhao W, Su W, Zhang Z, Zhang L,
Liu J, Ren G and Wang X: 18β-glycyrrhetinic acid inhibits
hepatocellular carcinoma development by reversing hepatic stellate
cell-mediated immunosuppression in mice. IntJ Cancer.
132:1831–1841. 2013. View Article : Google Scholar
|
29
|
Manns MP, Wedemeyer H, Singer A,
Khomutjanskaja N, Dienes HP, Roskams T, Goldin R, Hehnke U and
Inoue H: European SNMC Study Group: Glycyrrhizin in patients who
failed previous interferon alpha-basedtherapies: Biochemical and
histological effects after 52 weeks. J Viral Hepat. 19:537–546.
2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tang ZH, Li T, Chang LL, Zhu H, Tong YG,
Chen XP, Wang YT and Lu JJ: Glycyrrhetinic Acid triggers a
protectiveautophagy by activation of extracellular regulated
protein kinases in hepatocellular carcinoma cells. J Agric Food
Chem. 62:11910–11916. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Irie A, Fukui T, Negishi M, Nagata N and
Ichikawa A: Glycyrrhetinic acid bound to 11 beta-hydroxysteroid
dehydrogenase in rat liver microsomes. Biochim Biophys Acta.
1160:229–234. 1992. View Article : Google Scholar : PubMed/NCBI
|
32
|
Negishi M, Irie A, Nagata N and Ichikawa
A: Specific binding of glycyrrhetinic acid to the rat liver
membrane. Biochim Biophys Acta. 1066:77–82. 1991. View Article : Google Scholar : PubMed/NCBI
|
33
|
Tian Q, Zhang CN, Wang XH, Wang W, Huang
W, Cha RT, Wang CH, Yuan Z, Liu M, Wan HY and Tang H:
Glycyrrhetinic acid-modified chitosan/poly (ethylene glycol)
nanoparticles for liver-targeted delivery. Biomaterials.
31:4748–4756. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tian Q, Wang XH, Wang W, Zhang CN, Wang P
and Yuan Z: Self-assembly and liver targeting of sulfated chitosan
nanoparticles functionalized with glycyrrhetinic acid.
Nanomedicine. 8:870–879. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhang J, Zhang M, Ji J, Fang X, Pan X,
Wang Y, Wu C and Chen M: Glycyrrhetinic acid-mediated polymeric
drug delivery targeting the acidic microenvironment of
hepatocellular carcinoma. Pharm Res. 32:3376–3390. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chintharlapalli S, Papineni S, Jutooru I,
McAlees A and Safe S: Structure-dependent activity of
glycyrrhetinic acid derivatives asperoxisome proliferator-activated
receptor {gamma} agonists in colon cancer cells. Mol Cancer Ther.
6:1588–1598. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Marzban E, Alavizadeh SH, Ghiadi M,
Khoshangosht M, Khashayarmanesh Z, Abbasi A and Jaafari MR:
Optimizing the therapeutic efficacy of cisplatin PEGylated
liposomes via incorporation of different DPPG ratios: In vitro and
in vivo studies. Colloids Surf B Biointerfaces. 136:885–891. 2015.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Chi L, Na MH, Jung HK, Vadevoo SM, Kim CW,
Padmanaban G, Park TI, Park JY, Hwang I, Park KU, et al: Enhanced
delivery of liposomes to lung tumor through targeting interleukin-4
receptor on both tumor cells and tumor endothelial cells. J Control
Release. 209:327–336. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu D, Xing J, Xiong F, Yang F and Gu N:
Preparation and in vivo safety evaluations of
antileukemichomoharringtonine-loaded PEGylated liposomes. Drug Dev
Ind Pharm. 43:652–660. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kirby C, Clarke J and Gregoriadis G:
Effect of the cholesterol content of small unilamellar liposomeson
their stability in vivo and in vitro. Biochem J. 186:591–598. 1980.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Li J, Xu H, Ke X and Tian J: The
anti-tumor performance of docetaxel liposomes surface-modified with
glycyrrhetinic acid. J Drug Targeting. 20:467–473. 2012. View Article : Google Scholar
|
42
|
Chen J, Jiang H, Wu Y, Li Y and Gao Y: A
novel glycyrrhetinic acid-modified oxaliplatin liposome for
liver-targeting and in vitro/vivo evaluation. Drug Des Dev Ther.
9:2265–2275. 2015.
|
43
|
Cheng M, Gao X, Wang Y, Chen H, He B, Xu
H, Li Y, Han J and Zhang Z: Synthesis of glycyrrhetinic
acid-modified chitosan5-fluorouracil nanoparticles and its
inhibition of liver cancercharacteristics in vitro and in vivo. Mar
Drugs. 11:3517–3536. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Tian Q, Wang XH, Wang W, Zhang CN, Wang P
and Yuan Z: Self-assembly and liver targeting of sulfated
chitosannanoparticles functionalized with glycyrrhetinic acid.
Nanomedicine. 8:870–879. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ossipov DA: Nanostructured hyaluronic
acid-based materials for active delivery tocancer. Expert Opin Drug
Deliv. 7:681–703. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yang T, Choi MK, Cui FD, Kim JS, Chung SJ,
Shim CK and Kim DD: Preparationand evaluation of paclitaxel-loaded
PEGylated immunoliposome. J Control Release. 120:169–177. 2007.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Ravar F, Saadat E, Gholami M,
Dehghankelishadi P, Mahdavi M, Azami S and Dorkoosh FA: Hyaluronic
acid-coated liposomes for targeted delivery of paclitaxel, in-vitro
characterization and in-vivo evaluation. J Control Release.
229:10–22. 2016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Fan MH, Xu SY, Xia SQ and Zhang XM:
Preparation of salidroside nano-liposomes by ethanol injection
method and in vitro release study. Eur Food Res Technol.
227:167–174. 2008. View Article : Google Scholar
|
49
|
Higuchi T: Mechanism of sustained-action
medication. Theoretical analysis of rate of release of solid drugs
dispersed in solid matrices. J Pharm Sci. 52:1145–1149. 1963.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Weibull W: A statistical distribution of
wide applicability. J Appl Mech. 18:293–297. 1951.
|
51
|
Dutta R and Mahato RI: Recent advances in
hepatocellular carcinoma therapy. Pharmacol Ther. 173:106–117.
2017. View Article : Google Scholar : PubMed/NCBI
|
52
|
Sarfraz M, Afzal A, Raza SM, Bashir S,
Madni A, Khan MW, Ma X and Xiang G: Liposomal co-delivered
oleanolic acid attenuates doxorubicin-induced multi-organ toxicity
in hepatocellular carcinoma. Oncotarget. 8:47136–47153. 2017.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Himanshu P, Radha R and Vishnu A: Liposome
and their applications in cancer therapy. Braz Arch Boil Technol.
59:e161504772016.
|