1
|
Makino N, Nakamura Y, Yashiro M, Ae R,
Tsuboi S, Aoyaa Y, Kojo T, Uehara R, Kotani K and Yanagawa H:
Descriptive epidemiology of Kawasaki disease in Japan, 2011–2012:
From the results of the 22nd nationwide survey. J Epidemiol.
25:239–245. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kim GB, Han JW, Park YW, Song MS, Hong YM,
Cha SH, Kim DS and Park S: Epidemiologic features of Kawasaki
disease in South Korea: Data from nationwide survey, 2009–2011.
Pediatr Infect Dis J. 33:24–27. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lue HC, Chen LR, Lin MT, Chang LY, Wang
JK, Lee CY and Wu MH: Epidemiological features of Kawasaki disease
in Taiwan, 1976–2007: Results of five nationwide questionnaire
hospital surveys. Pediatr Neonatol. 55:92–96. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen JJ, Ma XJ, Liu F, Yan WL, Huang MR,
Huang M and Huang GY: Shanghai Kawasaki Disease Research Group:
Epidemiologic features of Kawasaki disease in shanghai from 2008
through 2012. Pediatr Infect Dis J. 35:7–12. 2016.PubMed/NCBI
|
5
|
Hartopo AB and Setianto BY: Coronary
artery sequel of Kawasaki disease in adulthood, a concern for
internists and cardiologists. Acta Med Indones. 45:69–75.
2013.PubMed/NCBI
|
6
|
Nakamura Y, Aso E, Yashiro M, Tsuboi S,
Kojo T, Aoyama Y, Kotani K, Uehara R and Yanagawa H: Mortality
among Japanese with a history of Kawasaki disease: Results at the
end of 2009. J Epidemiol. 23:429–434. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fukazawa R, Kobayashi T, Mikami M, Saji T,
Hamaoka K, Kato H, Suzuki H, Tsuda E, Ayusawa M, Miura M, et al:
Nationwide survey of patients with giant coronary aneurysm
secondary to Kawasaki disease 1999–2010 in Japan. Circ J.
82:239–246. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shulman ST: Intravenous immunoglobulin for
the treatment of Kawasaki disease. Pediatr Ann. 46:e25–e28. 2017.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Yoshida M, Oana S, Masuda H, Ishiguro A,
Kato H, Ito S, Kobayashi T and Abe J: Recurrence of fever after
initial intravenous immunoglobulin treatment in children with
Kawasaki disease. Clin Pediatr (Phila). 57:189–192. 2018.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Rigante D, Valentini P, Rizzo D, Leo A, De
Rosa G, Onesimo R, De Nisco A, Angelone DF, Compagnone A and Delogu
AB: Responsiveness to intravenous immunoglobulins and occurrence of
coronary artery abnormalities in a single-center cohort of Italian
patients with Kawasaki syndrome. Rheumatol Int. 30:841–846. 2010.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Pinna GS, Kafetzis DA, Tselkas OI and
Skevaki CL: Kawasaki disease: An overview. Curr Opin Infect Dis.
21:263–270. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Motoki N, Akazawa Y, Yamazaki S, Hachiya
A, Motoki H, Matsuzaki S and Koike K: Prognostic significance of QT
interval dispersion in the response to intravenous immunoglobulin
therapy in Kawasaki disease. Circ J. 81:537–542. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Komatsu H and Tateno A: Failure to
distinguish systemic-onset juvenile idiopathic arthritis from
incomplete Kawasaki disease in an infant. J Paediatr Child Health.
43:707–709. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Capittini C, Emmi G, Mannarino S, Bossi G,
Dellepiane RM, Salice P, Pietrogrande MC, Pasi A, De Silvestri A,
Tinelli C and Martinetti M: An immune-molecular hypothesis
supporting infectious aetiopathogenesis of Kawasaki disease in
children. Eur J Immunol. 48:543–545. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hara T, Nakashima Y, Sakai Y, Nishio H,
Motomura Y and Yamasaki S: Kawasaki disease: A matter of innate
immunity. Clin Exp Immunol. 186:134–143. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sato S, Kawashima H, Kashiwagi Y and
Hoshika A: Inflammatory cytokines as predictors of resistance to
intravenous immunoglobulin therapy in Kawasaki disease patients.
Int J Rheum Dis. 16:168–172. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Korematsu S, Uchiyama S, Miyahara H,
Nagakura T, Okazaki N, Kawano T, Kojo M and Izumi T: The
characterization of cerebrospinal fluid and serum cytokines in
patients with Kawasaki disease. Pediatr Infect Dis J. 26:750–753.
2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rasouli M, Heidari B and Kalani M:
Downregulation of Th17 cells and the related cytokines with
treatment in Kawasaki disease. Immunol Lett. 162:269–275. 2014.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Engelberg R, Martin M, Wrotniak BH and
Hicar MD: Observational study of Interleukin-21 (IL-21) does not
distinguish Kawasaki disease from other causes of fever in
children. Pediatr Rheumatol Online J. 15:322017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hu P, Jiang GM, Wu Y, Huang BY, Liu SY,
Zhang DD, Xu Y, Wu YF, Xia X, Wei W and Hu B: TNF-α is superior to
conventional inflammatory mediators in forecasting IVIG nonresponse
and coronary arteritis in Chinese children with Kawasaki disease.
Clin Chim Acta. 471:76–80. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K,
Guo J, Zhang Y, Chen J, Guo X, et al: Characterization of microRNAs
in serum: A novel class of biomarkers for diagnosis of cancer and
other diseases. Cell Res. 18:997–1006. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yun KW, Lee JY, Yun SW, Lim IS and Choi
ES: Elevated serum level of microRNA (miRNA) −200c and miRNA-371-5p
in children with Kawasaki disease. Pediatr Cardiol. 35:745–752.
2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang W, Wang Y, Zeng Y, Hu L and Zou G:
Serum miR-200c and miR-371-5p as the useful diagnostic biomarkers
and therapeutic targets in Kawasaki disease. Biomed Res Int.
2017:82578622017.PubMed/NCBI
|
24
|
Wang S, Wang JQ and Lv XW: Exosomal miRNAs
as biomarkers in the diagnosis of liver disease. Biomark Med.
11:491–501. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Matsumura T, Sugimachi K, Iinuma H,
Takahashi Y, Kurashige J, Sawada G, Ueda M, Uchi R, Ueo H, Takano
Y, et al: Exosomal microRNA in serum is a novel biomarker of
recurrence in human colorectal cancer. Br J Cancer. 113:275–281.
2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tanaka Y, Kamohara H, Kinoshita K,
Kurashige J, Ishimoto T, Iwatsuki M, Watanabe M and Baba H:
Clinical impact of serum exosomal microRNA-21 as a clinical
biomarker in human esophageal squamous cell carcinoma. Cancer.
119:1159–1167. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jia HL, Liu CW, Zhang L, Xu WJ, Gao XJ,
Bai J, Xu YF, Xu MG and Zhang G: Sets of serum exosomal microRNAs
as candidate diagnostic biomarkers for Kawasaki disease. Sci Rep.
7:447062017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Higuchi T, Fukuda N, Yamamoto C, Yamazaki
T, Oikawa O, Ohnishi Y, Okada K, Soma M and Matsumoto K: The
influence of uremic serum on interleukin-1beta and interleukin-1
receptor antagonist production by peripheral blood mononuclear
cells. Ther Apher Dial. 10:65–71. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Clinchy B, Gunneras M, Hakansson A and
Hakansson L: Production of IL-1Ra by human mononuclear blood cells
in vitro: Influence of serum factors. Cytokine. 34:320–330. 2006.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Alidjinou EK, Sané F, Engelmann I and
Hober D: Serum-dependent enhancement of coxsackievirus B4-induced
production of IFNα, IL-6 and TNFα by peripheral blood mononuclear
cells. J Mol Biol. 425:5020–5031. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sandri S, Hatanaka E, Franco AG, Pedrosa
AM, Monteiro HP and Campa A: Serum amyloid A induces CCL20
secretion in mononuclear cells through MAPK (p38 and ERK1/2)
signaling pathways. Immunol Lett. 121:22–26. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Harshyne LA, Nasca BJ, Kenyon LC, Andrews
DW and Hooper DC: Serum exosomes and cytokines promote a T-helper
cell type 2 environment in the peripheral blood of glioblastoma
patients. Neuro Oncol. 18:206–215. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhou X, Jiao Z, Ji J, Li S, Huang X, Lu X,
Zhao H, Peng J, Chen X, Ji Q and Ji Y: Characterization of mouse
serum exosomal small RNA content: The origins and their roles in
modulating inflammatory response. Oncotarget. 8:42712–42727.
2017.PubMed/NCBI
|
34
|
Okuzaki D, Ota K, Takatsuki SI, Akiyoshi
Y, Naoi K, Yabuta N, Saji T and Nojima H: FCN1 (M-ficolin), which
directly associates with immunoglobulin G1, is a molecular target
of intravenous immunoglobulin therapy for Kawasaki disease. Sci
Rep. 7:113342017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bolstad BM: Bolstad B preprocessCore: A
collection of pre-processing functions. R Package. version 1.28. 0.
2013.
|
36
|
Smyth GK: Limma: Linear models for
microarray dataBioinformatics and computational biology solutions
using R and Bioconductor. Springer; pp. 397–420. 2005, View Article : Google Scholar
|
37
|
Kolde R: (2015) Pheatmap: Pretty Heatmaps.
R package. version 1.0. 8. 2015.
|
38
|
Kohl M, Wiese S and Warscheid B:
Cytoscape: software for visualization and analysis of biological
networks. Methods Mol Biol. 696:291–303. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Huang DW, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Rong X, Jia L, Hong L, Pan L, Xue X, Zhang
C, Lu J, Jin Z, Qiu H, Wu R and Chu M: Serum miR-92a-3p as a new
potential biomarker for diagnosis of Kawasaki disease with coronary
artery lesions. J Cardiovasc Transl Res. 10:1–8. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Shimizu C, Kim J, Stepanowsky P, Trinh C,
Lau HD, Akers JC, Chen C, Kanegaye JT, Tremoulet A, Ohno-Machado L
and Burns JC: Differential Expression of miR-145 in Children with
Kawasaki disease. PLoS One. 8:e581592013. View Article : Google Scholar : PubMed/NCBI
|
42
|
He F, Lv P, Zhao X, Wang X, Ma X, Meng W,
Meng X and Dong S: Predictive value of circulating miR-328 and
miR-134 for acute myocardial infarction. Mol Cell Biochem.
394:137–144. 2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wang R, Li N, Zhang Y, Ran Y and Pu J:
Circulating microRNAs are promising novel biomarkers of acute
myocardial infarction. Intern Med. 50:1789–1795. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wang KJ, Zhao X, Liu YZ, Zeng QT, Mao XB,
Li SN, Zhang M, Jiang C, Zhou Y, Qian C, et al: Circulating
MiR-19b-3p, MiR-134-5p and MiR-186-5p are promising novel
biomarkers for early diagnosis of acute myocardial infarction. Cell
Physiol Biochem. 38:1015–1029. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wang K, Yuan Y, Cho JH, Mcclarty S, Baxter
D and Galas DJ: Comparing the MicroRNA spectrum between serum and
plasma. PLoS One. 7:e415612012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Jiang J, Cai Y, Li Z, Huang L, Chen J,
Tian L, Wu Z, Li X, Chen Z, Chen C and Yang Z: Screening of
differentially expressed genes associated with Kawasaki disease by
microarray analysis. Exp Ther Med. 14:3159–3164. 2017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Leonard DA, Merhige ME, Williams BA and
Greene RS: Elevated expression of the interleukin-8 receptors CXCR1
and CXCR2 in peripheral blood cells in obstructive coronary artery
disease. Coron Artery Dis. 22:491–496. 2011.PubMed/NCBI
|
48
|
Chan LP, Liu C, Chiang FY, Wang LF, Lee
KW, Chen WT, Kuo PL and Liang CH: IL-8 promotes inflammatory
mediators and stimulates activation of p38 MAPK/ERK-NF-κB pathway
and reduction of JNK in HNSCC. Oncotarget. 8:56375–56388. 2017.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Li Z, Jiang J, Tian L, Li X, Chen J, Li S,
Li C and Yang Z: A plasma mir-125a-5p as a novel biomarker for
Kawasaki disease and induces apoptosis in HUVECs. PLoS One.
12:e01754072017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kotla S, Singh NK, Heckle MR, Tigyi GJ and
Rao GN: The transcription factor CREB enhances interleukin-17A
production and inflammation in a mouse model of atherosclerosis.
Sci Signal. 6:ra832013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhou H, Ma H, Wei W, Ji D, Song X, Sun J,
Zhang J and Jia L: B4GALT family mediates the multidrug resistance
of human leukemia cells by regulating the hedgehog pathway and the
expression of p-glycoprotein and multidrug resistance-associated
protein 1. Cell Death Dis. 4:e6542013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Mayo L, Trauger SA, Blain M, Nadeau M,
Patel B, Alvarez JI, Mascanfroni ID, Yeste A, Kivisäkk P, Kallas K,
et al: Regulation of astrocyte activation by glycolipids drives
chronic CNS inflammation. Nat Med. 20:1147–1156. 2014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Mehta MB, Shewale SV, Sequeira RN, Millar
JS, Hand NJ and Rader DJ: Hepatic protein phosphatase 1 regulatory
subunit 3B (Ppp1r3b) promotes hepatic glycogen synthesis and
thereby regulates fasting energy homeostasis. J Biol Chem.
292:10444–10454. 2017. View Article : Google Scholar : PubMed/NCBI
|
54
|
Ceperuelo-Mallafré V, Ejarque M, Serena C,
Duran X, Montori-Grau M, Rodríguez MA, Yanes O, Núñez-Roa C, Roche
K, Puthanveetil P, et al: Adipose tissue glycogen accumulation is
associated with obesity-linked inflammation in humans. Mol Metab.
5:5–18. 2015. View Article : Google Scholar : PubMed/NCBI
|
55
|
Kim B, Yang MS, Choi D, Kim JH, Kim HS,
Seol W, Choi S, Jou I, Kim EY and Joe EH: Impaired inflammatory
responses in murine Lrrk2-knockdown brain microglia. PLoS One.
7:e346932012. View Article : Google Scholar : PubMed/NCBI
|
56
|
Kanter JE, Kramer F, Barnhart S, Averill
MM, Vivekanandan-Giri A, Vickery T, Li LO, Becker L, Yuan W, Chait
A, et al: Diabetes promotes an inflammatory macrophage phenotype
and atherosclerosis through acyl-CoA synthetase 1. Proc Natl Acad
Sci USA. 109:E715–E724. 2012. View Article : Google Scholar : PubMed/NCBI
|
57
|
Lin L, Wang H, Gao B, Zhi X and He AR:
Abstract 5184: Mechanistic analysis of liver inflammation and
cancer formation in mice with heterozygous lose of β-spectrin
(β2SP). Cancer Res. 73:5184. 2013. View Article : Google Scholar
|