1
|
Chang ET and Adami HO: The enigmatic
epidemiology of nasopharyngeal carcinoma. Cancr Epidemiol
Biomarkers Prev. 15:1765–1777. 2006. View Article : Google Scholar
|
2
|
Lee FK, Yeung DK, King AD, Leung SF and
Ahuja A: Segmentation of nasopharyngeal carcinoma (NPC) lesions in
MR images. Int J Radiat Oncol Biol Phys. 61:608–620. 2005.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Tatanun C, Ritthipravat P, Bhongmakapat T
and Tuntiyatorn L: Automatic segmentation of nasopharyngeal
carcinoma from CT images: Region growing based technique. Signal
Processing Systems (ICSPS), 2010. 2nd International Conference on.
2010.(DOI: 10.1109/ICSPS.2010.5555663). View Article : Google Scholar
|
4
|
Chanapai W, Bhongmakapat T, Tuntiyatorn L
and Ritthipravat P: Nasopharyngeal carcinoma segmentation using a
region growing technique. Int J Comput Assist Radiol Surg.
7:413–422. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Huang KW, Zhao ZY, Gong Q, Zha J, Chen L
and Yang R: Nasopharyngeal carcinoma segmentation via HMRF-EM with
maximum entropy. Conf Proc IEEE Eng Med Biol Soc. 2968–2972.
2015.(DOI: 10.1109/EMBC.2015.7319015). PubMed/NCBI
|
6
|
Fitton I, Cornelissen SA, Duppen JC,
Steenbakkers RJ, Peeters ST, Hoebers FJ, Kaanders JH, Nowak PJ,
Rasch CR and van Herk M: Semi-automatic delineation using weighted
CT-MRI registered images for radiotherapy of nasopharyngeal cancer.
Med Phys. 38:4662–4666. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhou J, Chan KL, Xu P and Chong VFH:
Nasopharyngeal carcinoma lesion segmentation from MR images by
support vector machine. In Biomedical Imaging: Nano to Macro, 2006.
The 3rd IEEE International Symposium on. 2006.(DOI:
10.1109/ISBI.2006.1625180).
|
8
|
Zhou J, Lim TK, Chong V and Huang J:
Segmentation and visualization of nasopharyngeal carcinoma using
MRI. Comput Biol Med. 33:407–424. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
LeCun Y, Bottou L, Bengio Y and Haffner P:
Gradient-based learning applied to document recognition. Proc IEEE.
86:2278–2324. 1998. View Article : Google Scholar
|
10
|
Krizhevsky A, Sutskever I and Hinton GE:
ImageNet classification with deep convolutional neural networks.
Adv Neural Inf Process Syst. 1:1097–1105, 2012. 2012.
|
11
|
Prasoon A, Petersen K, Igel C, Lauze F,
Dam E and Nielsen M: Deep feature learning for knee cartilage
segmentation using a triplanar convolutional neural network. Med
Image Comput Comput Assist Interv. 16:246–253. 2013.PubMed/NCBI
|
12
|
Roth HR, Farag A, Lu L, Turkbey EB and
Summers RM: Deep convolutional networks for pancreas segmentation
in CT imaging. SPIE Med Imag. 94131G. 2015.(DOI:
10.1117/12.2081420).
|
13
|
Liskowski P and Krawiec K: Segmenting
retinal blood vessels with deep neural networks. IEEE Trans Med
Imaging. 35:2369–2380. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang W, Li R, Deng H, Wang L, Lin W, Ji S
and Shen D: Deep convolutional neural networks for multi-modality
isointense infant brain image segmentation. Neuroimage.
108:214–224. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Moeskops P, Viergever MA, Mendrik AM, de
Vries LS, Benders MJ and Isgum I: Automatic segmentation of MR
brain images with a convolutional neural network. IEEE Trans Med
Imaging. 35:1252–1261. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Pereira S, Pinto A, Alves V and Silva CA:
Brain tumor segmentation using convolutional neural networks in MRI
images. IEEE Trans Med Imaging. 35:1240–1251. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zikic D, Ioannou Y, Brown M and Criminisi
A: Segmentation of brain tumor tissues with convolutional neural
networks. MICCAI Multi Brain Tumor Segment Challeng (BraTS).
2014:36–39. 2014.
|
18
|
Havaei M, Ddavy A, Warde-Farley D, Biard
A, Courville A, Bengio Y, Pal C, Jodoin PM and Larochelle H: Brain
tumor segmentation with deep neural networks. Med Image Anal.
35:18–31. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ma ZQ, Wu X and Zhou JL: Automatic
nasopharyngeal carcinoma segmentation in MR images with
convolutional neural networks. 2017 Int Conference Front Adv Data.
147–150. 2017. View Article : Google Scholar
|
20
|
Tustison NJ, Avants BB, Cook PA, Zheng Y,
Eqan A, Yushkevich PA and Gee JC: N4ITK: Improved N3 bias
correction. IEEE Trans Med Imaging. 29:1310–1320. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Nyúl LG, Udupa JK and Zhang X: New
variants of a method of MRI scale standardization. IEEE Trans Med
Imaging. 19:143–150. 2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hinton GE, Srivastava N, Krizhevsky A,
Sutskever I and Salakhutdinov RR: Improving neural networks by
preventing co-adaptation of feature detectors. Neural Evolution
Comput. 2012.
|
23
|
Jarrett K, Kavukcuogly K, Ranzato M and
LeCun Y: What is the best multi-stage architecture for object
recognition? IEEE. 1–2153. 2009.
|
24
|
Boykov Y, Veksler O and Zabih R: Fast
approximate energy minimization via graph cuts. IEEE Trans Pattern
Anal Mach Intell. 23:1222–1239. 2001. View Article : Google Scholar
|
25
|
Boykov Y and Funka-Lea G: Graph cuts and
efficient N-D image segmentation. Int J Comput Vis. 70:109–131.
2006. View Article : Google Scholar
|
26
|
Grosgeorge D, Petitjean C, Dacher JN and
Ruan S: Graph cut segmentation with a statistical shape model in
cardiac MRI. Comput Vis Image Understand. 117:1027–1035. 2013.
View Article : Google Scholar
|
27
|
Martinez-Muñoz S, Ruiz-Fernandez D and
Galiana-Merino JJ: Automatic abdominal aortic aneurysm segmentation
in MR images. Expert Syst Applicat. 54:78–87. 2016. View Article : Google Scholar
|
28
|
Mahapatra D and Buhmann JM: Prostate MRI
segmentation using learned semantic knowledge and graph cuts. IEEE
Trans Biomed Eng. 61:756–764. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tian Z, Liu L, Zhang Z and Fei B:
Superpixel-based segmentation for 3D prostate MR images. IEEE Trans
Med Imaging. 35:791–801. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Song Q, Bai J, Han D, Bhatia S, Sun W,
Rockey W, Bayouth JE, Buatti JM and Wu X: Optimal co-segmentation
of tumor in PET-CT images with context information. IEEE Trans Med
Imaging. 32:1685–1697. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Jia Y, Shelhamer E, Donahue J, Karayev S,
Long J, Girshick R, Guadarrama S and Darrell T: Caffe:
Convolutional architecture for fast feature embedding. Proceed of
the 22nd ACM Int Conferen Multimedia. ACM; pp. 675–678. 2014
|
32
|
Glorot X and Bengio Y: Understanding the
difficulty of training deep feedforward neural networks. in Proc
Int Conf Artif Intell Stat. 2010:249–256. 2010.
|
33
|
Sutskever I, Martens J, Dahl G and Hinton
G: On the importance of initialization and momentum in deep
learning. PMLR. 28:1139–1147. 2013.
|