Cellular signaling pathways regulating β‑cell proliferation as a promising therapeutic target in the treatment of diabetes (Review)
- Authors:
- Wen‑Juan Jiang
- Yun‑Chuan Peng
- Kai‑Ming Yang
-
Affiliations: Institute of Anatomy, Basic Medical College of Dali University, Dali, Yunnan 671000, P.R. China - Published online on: August 13, 2018 https://doi.org/10.3892/etm.2018.6603
- Pages: 3275-3285
-
Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Farney AC, Sutherland DE and Opara EC: Evolution of islet transplantation for the last 30 years. Pancreas. 1:8–20. 2016. View Article : Google Scholar | |
Tiwari S, Roel C, Wills R, Casinelli G, Tanwir M, Takane KK and Fiaschi-Taesch NM: Early and late G1/S cyclins and Cdks act complementarily to enhance authentic human β-cell proliferation and expansion. Diabetes. 10:3485–3498. 2015. View Article : Google Scholar | |
Wang GS, Rosenberg L and Scott FW: Tubular complexes as a source for islet neogenesis in the pancreas of diabetes-prone BB rats. Lab Invest. 5:675–688. 2005. View Article : Google Scholar | |
Dor Y, Brown J, Martinez OI and Melton DA: Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nautre. 429:41–46. 2004. View Article : Google Scholar | |
Stewart AF, Hussain MA, Garcia-Ocana A, Vasavada RC, Bhunshan A, Bernal-Mizrachi E and Kulkarni RN: Human β-cell proliferation and intracellular signaling: Part 3. Diabetes. 4:1872–1885. 2015. View Article : Google Scholar | |
Saltiel AR and Kahn CR: Insulin signaling and the regulation of glucose and lipid metabolism. Nature. 414:799–806. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kulkarni RN, Mizrachi EB, Ocana AG and Stewart AF: Human β-cell proliferation and intracellular signaling: Driving in the dark without a road map. Diabetes. 9:2205–2213. 2012. View Article : Google Scholar | |
Pende M, Kozma SC, Jaquet M, Oorschot V, Burcelin R, Le Marchand-Brustel Y, Kluperman J, Thorens B and Thomas G: Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature. 408:994–997. 2000. View Article : Google Scholar : PubMed/NCBI | |
Arajuo EP, Amaral ME, Souza CT, Bordin S, Ferreira F, Saad MJ, Boschero AC, Maqalhaes EC and Velloso LA: Blockade of IRS1 in isolated rat pancreatic islets improves glucose-induced insulin secretion. FEBS Lett. 531:437–442. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bringhenti I, Ornellas F, Mandarim-de-Lacerda CA and Aguila MB: The insulin-signaling pathway of the pancreatic islet is impaired in adult mice offspring of mothers fed a high-fat diet. Nutrition. 32:1138–1143. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ou Y, Ren Z, Wang J and Yang X: Phycocyanin ameliorates alloxan-induced diabetes mellitus in mice: Involved in insulin signaling pathway and GK expression. Chem Biol Interact. 247:49–54. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kaneko K, Ueki K, Takahashi N, Hashimoto S, Okamoto M, Awazawa M, Okazaki Y, Ohsugi M, Inabe K, Umehara T, et al: Class IA phosphatidylinositol 3-kinase in pancreatic β cells controls insulin secretion by multiple mechanisms. Cell Metab. 12:619–632. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Lu M, Monks BR and Birnabaum MJ: Insulin is required to maintain albumin expression by inhibiting forkhead box o1 protein. J Biol Chem. 291:2371–2378. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Chen X, Ding X, He Y, Gu C and Zhou L: Exendin-4 promotes beta cell proliferation via PI3K/Akt signaling pathway. Cell Physiol Biochem. 35:2223–2232. 2015. View Article : Google Scholar : PubMed/NCBI | |
Katoh M and Katoh H: Human FOX gene family (Review). Int J Oncol. 25:1495–1500. 2004.PubMed/NCBI | |
Seyer P, Vallois D, Poitry-Yamate C, Schutz F, Metref S, Tarussio D, Maechler P, Staels B, Lanz B, Grueter R, et al: Hepatic glucose sensing is required to preserve β cell glucose competence. J Clin Invest. 123:1662–1676. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Jiang X, Gong L and Xing D: Photoactivation of Akt1/GSK3β Isoform-Specific signaling axis promotes pancreatic β-cell regeneration. J Cell Biochem. 116:1741–1754. 2015. View Article : Google Scholar : PubMed/NCBI | |
Boucher MJ, Selander L, Carlsson L and Edlund H: Phosphorylation marks IPF1/PDX1 protein for degradation by glycogen synthase kinase 3-dependent mechanisms. J Biol Chem. 281:6395–6403. 2006. View Article : Google Scholar : PubMed/NCBI | |
Morral N: Novel targets and therapeutic strategies for type 2 diabetes. Trends Endocrinol Metab. 14:169–175. 2003. View Article : Google Scholar : PubMed/NCBI | |
Foster KG and Fingar DC: Mammalian target of rapamycin (mTOR): Conducting the cellular signaling symphony. J Biol Chem. 285:14071–14077. 2010. View Article : Google Scholar : PubMed/NCBI | |
Duzgn Z, Eroglu Z and Biray-Avci C: Role of mTOR in glioblastoma. Gene. 575:187–190. 2016. View Article : Google Scholar : PubMed/NCBI | |
Maiese K: Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res. 11:372–385. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Yang X and Zhang J: Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells. Cell Signal. 28:1099–1104. 2016. View Article : Google Scholar : PubMed/NCBI | |
Maiese K: Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol. 82:1245–1266. 2016. View Article : Google Scholar : PubMed/NCBI | |
Escribano O, Gomez-Hernandez A, Diaz-Castroverde S, Nevado C, Garcia G, Otoro YF, Perdomo L, Beneit N and Benito M: Insulin receptor isoform A confers a higher proliferative capability to pancreatic β cells enabling glucose availability and IGF-1 signaling. Mol Cell Endocrinol. 409:82–91. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li W, Zhang H, Nie A, Ni Q, Li F, Ning G, Li X, Gu Y and Wang Q: mTORC1 pathway mediates beta cell compensatory proliferation in 60% partial-pancreatectomy mice. Endocrine. 53:117–128. 2016. View Article : Google Scholar : PubMed/NCBI | |
McCurdy CE and Klemm DJ: Adipose tissue insulin sensitivity and macrophage recruitment: Does PI3K pick the pathway. Adipocyte. 2:135–142. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bringhenti I, Moraes-Teixeira JA, Cunha MR, Ornellas F, Mandarim-de-lacerda CA and Aguila MB: Maternal obesity during the preconception and early life periods alters pancreatic development in early and adult life in male mouse offspring. PLoS One. 8:e557112013. View Article : Google Scholar : PubMed/NCBI | |
Cerf ME, Williams K, Chapman CS and Louw J: Compromised beta-cell development and beta-cell dysfunction in weanling offspring from dams maintained on a high-fat diet during gestation. Pancreas. 34:347–353. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rhee M, Lee H, Kim JW, Ham DS, Park HS, Yang HK, Shin JY, Cho JH, Kim YB, Youn BS, et al: Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells. Sci Rep. 6:239602016. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Liao G, Xiang C, Yang X, Cheng X and Ou Y: Effects of phycocyanin on INS-1 pancreatic β-cell mediated by PI3K/Akt/FoxO1 signaling pathway. Int J Biol Macromol. 83:185–194. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ahn C, An BS and Jeung EB: Streptozotocin induces endoplasmic reticulum stress and apoptosis via disruption of calcium homeostasis in mouse pancreas. Mol Cell Endocrinol. 412:302–308. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khan S, Yan-Do R, Duong E, Wu X, Bautista A, Cheley S, MacDonald PE and Braun M: Autocrine activation of P2Y1 receptors couples Ca (2+) release in human pancreatic beta cells. Diabetologia. 57:2235–2245. 2014. View Article : Google Scholar | |
Roper MG, Qian WJ, Zhang BB, Kulkarni RN, Kahn CR and Kennedy RT: Effect of the insulin mimetic L-783,281 on intracellular Ca2 and insulin secretion from pancreatic beta-cells. Diabetes. 51 Suppl:S43–S49. 2002. View Article : Google Scholar : PubMed/NCBI | |
Demozay D, Tsunekawa S, Briaud I, Shah R and Rhodes CJ: Specific glucose-induced control of insulin receptor substrate-2 expression is mediated via Ca2+-dependent calcineurin/NFAT signaling in primary pancreatic islet β-cells. Diabetes. 60:2892–2902. 2011. View Article : Google Scholar : PubMed/NCBI | |
Goodyer WR, Gu X, Liu Y, Bottino R, Crabtree GR and Kim SK: Neonatal β cell development in mice and humans is regulated by calcineurin/NFAT. Dev Cell. 23:21–34. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nguidjoe E, Sokolow S, Bigabwa S, Pachera N, D'Amico E, Allagnat F, Vanderwinden JM, Sener A, Manto M, Depreter M, et al: Heterozygous inactivation of the Na/Ca exchanger increases glucose-induced insulin release, β-cell proliferation, and mass. Diabetes. 60:2076–2085. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lawrence MC, Naziruddin B, Levy MF, Jackson A and McGlynn K: Calcineurin/nuclear factor of activated T cells and MAPK signaling induce TNF-{alpha} gene expression in pancreatic islet endocrine cells. J Biol Chem. 286:1025–1036. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gilon P, Chae HY, Rutter GA and Ravier MA: Calcium signaling in pancreatic β-cells in health and in type 2 diabetes. Cell Calcium. 5:340–361. 2014. View Article : Google Scholar | |
Kappel VD, Frederico MJ, Postal BG, Mendes CP, Cazarolli LH and Silva FR: The role of calcium in intracellular pathways of rutin in rat pancreatic islets: Potential insulin secretagogue effect. Eur J Pharmacol. 702:264–268. 2013. View Article : Google Scholar : PubMed/NCBI | |
Castro AJ, Cazarolli LH, de-Carvalho FK, da Luz G, Altenhofen D, dos Santos AR, Pizzolatti MG and Silva FR: Acute effect of 3β-hidroxihop-22(29)ene on insulin secretion is mediated by GLP-1, potassium and calcium channels for the glucose homeostasis. J Sterois Biochem Mol Biol. 150:112–122. 2015. View Article : Google Scholar | |
Marcelo KL, Ribar T, Means CR, Tsimelzon A, Stevens RD, Llkayeva O, Bain JR, Hilsenbeck SG, Newgard CB, Means AR and York B: Research resource: Roles for calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in systems metabolism. Mol Endocrinol. 30:557–572. 2016. View Article : Google Scholar : PubMed/NCBI | |
Markwardt ML, Seckinger KM and Rizzo MA: Regulation of glucokinase by intracellular calcium levels in pancreatic β cells. J Biol Chem. 291:3000–3009. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nussinov R, Tsai CJ, Muratcioglu S, Jang H, Gursoy A and Keskin O: Principles of K-Ras effector organization and the role of oncogenic K-Ras in cancer initiation through G1 cell cycle. Expert Rev Proteomics. 12:669–682. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chamberlain CE, Scheel DW, Mcglynn K, Kim H, Miyatsuka T, Wang J, Nguyen V, Zhao S, Mavropoulos A, Abraham AG, et al: Menin determines K-RAS proliferative outputs in endocrine cells. J Clin Invest. 124:4093–4101. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim TK, Lee JS, Jung HS, Ha TK, Kim SM, Han N, Lee EJ, Kim TN, Kwon MJ, Lee SH, et al: Triiodothyronine induces proliferation of pancreatic β-cells through the MAPK/ERK pathway. Exp Clin Endocrinol Diabetes. 122:240–245. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Gu X, Liu Y, Wang J, Wirt SE, Bottino R, Schorle H, Sage J and Kim SK: PDGF signaling controls age-dependent proliferation in pancreatic β-cells. Nature. 478:349–355. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hoarau E, Chandra V, Rustin P, Scharfmann R and Duvillie B: Pro-oxidant/antioxidant balance controls pancreatic β-cell differentiation through the ERK1/2 pathway. Cell Death Dis. 5:e14872014. View Article : Google Scholar : PubMed/NCBI | |
Xiang RL, Mei M, Su YC, Li L, Wang JY and Wu LL: Visfatin protects rat pancreatic β-cells against IFN-γ-induced apoptosis through AMPK and ERK1/2 signaling pathways. Biomed Environ Sci. 28:169–177. 2015.PubMed/NCBI | |
Ozaki KI, Awazu M, Tamiya M, Lwasaki Y, Harada A, Kugisaki S, Tanimura S and Kohno M: Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes. Am J Physiol Endocrino Metab. 310:E643–E651. 2016. View Article : Google Scholar | |
Wang H, Gambosova K, Cooper ZA, Holloway MP, Kassai A, Lzquierdo D, Cleveland K, Boney CM and Altura RA: EGF regulates surviving stability through the Raf-1/ERK pathway in insulin-secreting pancreatic β-cells. BMC Mol Biol. 11:662010. View Article : Google Scholar : PubMed/NCBI | |
Ernesto BM, Kulkarni RN, Scott DK, Mauvais-Jarvis F, Stewart AF and Garcia-Ocana A: Human β-cell proliferation and intracellular signaling part 2: Still driving in the dark without a road map. Diabetes. 63:819–831. 2014. View Article : Google Scholar : PubMed/NCBI | |
Oh YS, Shin S, Lee YJ, Kim EH and Jun HS: Betacellulin-induced beta cell proliferation and regeneration is mediated by activation of ErbB-1 and ErbB-2 receptors. PLoS One. 6:e238942011. View Article : Google Scholar : PubMed/NCBI | |
Hakonen E, Ustinov J, Eizirik DL, Sariola H, Miettinen PJ and Otonkoski T: In vivo activation of the PI3K-Akt pathway in mouse beta cells by the EGFR mutation L858R protects against diabetes. Diabetologia. 57:970–979. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zarrouki B, Benterki I, Fontes G, Peyot ML, Seda O, Prentki M and Poitout V: Epidermal growth factor receptor signaling promotes pancreatic β-cell proliferation in response to nutrient excess in rats through mTOR and FOXM1. Diabetes. 63:982–993. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang CC, Yin X, Cao CY, Wei J, Zhang Q and Gao JM: Chemical constituents from hericium erinaceus and their ability to stimulate NGF-mediated neurite outgrowth on PC12 cells. Bioorg Med Chem Lett. 25:5078–5082. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rosenbaum T, Vidaltamayo R, Sanchez-Soto MC, Zentella A and Hiriart M: Pancreatic beta cells synthesize and secrete nerve growth factor. Proc Natl Acad Sci USA. 95:7784–7788. 1998. View Article : Google Scholar : PubMed/NCBI | |
Freund V and Frossard N: Expression of nerve growth factor in the airways and its possible role in asthma. Prog Brain Res. 146:335–346. 2004. View Article : Google Scholar : PubMed/NCBI | |
Roux PP and Barker PA: Neurotrophin signaling through the P75 neurotrophin receptor. Prog Neurobiol. 67:203–233. 2002. View Article : Google Scholar : PubMed/NCBI | |
Pingitore A, Caroleo MC, Cione E, Castanera-Gonzalez R, Huang GC and Perasud SJ: Fine tuning of insulin secretion by release of nerve growth factor from mouse and human islet β-cells. Mol Cell Endocrinol. 436:23–32. 2016. View Article : Google Scholar : PubMed/NCBI | |
EI-Gohary Y, Tulachan S, Guo P, Welsh C, Wiersch J, Prasadan K, Paredes J, Shiota C, Xiao X, Wada Y, et al: Smad signaling pathways regulate pancreatic endocrine development. Dev Biol. 378:83–93. 2013. View Article : Google Scholar : PubMed/NCBI | |
Feng Z, Zi Z and Liu X: Measuring TGF-β ligand dynamics in culture medium. Methods Mol Biol. 1344:379–389. 2016. View Article : Google Scholar : PubMed/NCBI | |
Richardson CC, To K, Foot VL, Hauge-Evans AC, Carmignac D and Christie MR: Increased perinated remodeling of the pancreas in somatostatin-deficient mice: Potential role of transforming growth factor-beta signaling in regulating beta cell growth in early life. Horm Metab Res. 47:56–63. 2015.PubMed/NCBI | |
Xiao X, Wiersch J, EI-Gohary Y, Guo P, Prasadan K, Paredes J, Welsh C, Shiota C and Gittes GK: TGFβ receptor signaling is essential for inflammation-induced but not β-cell workload-induced β-cell proliferation. Diabetes. 62:1217–1226. 2013. View Article : Google Scholar : PubMed/NCBI | |
Blum B, Roose AN, Barrrandon O, Maehr R, Arvanites AC, Davidow LS, Davis JC, Peterson QP, Rubin LL and Melton DA: Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFβ pathway. Elife. 3:e028092014. View Article : Google Scholar : PubMed/NCBI | |
Bruun C, Christensen GL, Jacobsen ML, Kanstrup MB, Jensen PR, Fjordvang H, Mandrup-Poulsen T and Billestrup N: Inhibition of beta cell growth and function by bone morphogenetic proteins. Diabetologia. 57:2546–2554. 2014. View Article : Google Scholar : PubMed/NCBI | |
EI-Gohary Y, Tulachan S, Wiersch J, Guo P, Welsh C, Prasadan K, Paredes J, Shiota C, Xiao X, Wada Y, et al: A smad signaling network regulates islet cell proliferation. Diabetes. 63:224–236. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lei C, Zhou X, Pang Y, Mao Y, Lu X, Li M and Zhang J: TGF-β signaling prevents pancreatic beta cell death after proliferation. Cell Prolif. 48:356–362. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Mezghenna K, Marmol P, Guo T, Moliner A, Yang SN, Berggren PO and Lbanez CF: Differential regulation of mouse pancreatic islet insulin secretion and Smad proteins by activin ligands. Diabetologia. 57:148–156. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xiao X, Gaffar I, Guo P, Wiersch J, Fischbach S, Peirish L, Song Z, El-Gohary Y, Prasadan K, Shiota G and Gittes GK: M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Prov Natl Acad Sci USA. 111:E1211–E1220. 2014. View Article : Google Scholar | |
Shin JA, Hong OK, Lee HJ, Jeon SY, Kim JW, Lee SH, Cho JH, Lee JM, Choi YH, Chang SA, et al: Transforming growth factor-β induces epithelial to mesenchymal transition and suppresses the proliferation and transdifferentiation of cultured human pancreatic duct cells. J Cell Biochem. 112:179–188. 2011. View Article : Google Scholar : PubMed/NCBI | |
Toren-Haritan G and Efrat S: TGFβ pathway inhibition redifferentiates human pancreatic islet β cells expanded in vitro. PLoS One. 9:e01391682015. View Article : Google Scholar | |
Li J, Ying H, Cai G, Guo Q and Chen L: Pre-Eclampsia-associated reduction in placental growth factor impaired beta cell proliferation through PI3K signaling. Cell Physiol Biochem. 36:34–43. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang Y and Chang Y: Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling. Prog Mol Biol Transl Sci. 121:321–349. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee YS and Jun HS: Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism. 63:9–19. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tian L and Jin T: The incretin hormone GLP-1 and mechanisms underlying its secretion. J Diabetes. 8:753–765. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dai FF, Bhattacharjee A, Liu Y, Batchuluun B, Zhang M, Wang XS, Huang X, Luu L, Zhu D, Gaisano H and Wheeler MB: A novel GLP1 receptor interacting protein ATP6ap2 regulates insulin secretion in pancreatic beta cells. J Biol Chem. 290:25045–25061. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Robitaille M, Showalter AD, Huang X, Liu Y, Bhattacharjee A, Willard FS, Han J, Froese S, Wei L, et al: Progesterone receptor membrane component 1 is a functional part of the glucagon-like peptide-1 (GLP-1) receptor complex in pancreatic β cells. Mol Cell Proteomics. 13:3049–3062. 2014. View Article : Google Scholar : PubMed/NCBI | |
Campbell JE and Drucker DJ: Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 17:819–837. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lavine JA and Attie AD: Gastrointerstinal hormones and the regulation of β-cell mass. Ann NY Acad Sci. 1212:41–58. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kong X, Yan D, Wu X, Guan Y and Ma X: Glucotoxicity inhibits cAMP-protein kinase A-potentiated glucose-stimulated insulin secretion in pancreatic β-cells. J Diabetes. 7:378–385. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Ding Y, Zhong X, Guo Q, Wang H, Gao J, Bai T, Ren L, Guo Y, Jiao X and Liu Y: Geniposide acutely stimulates insulin secretion in pancreation β-cells by regulating GLP-1 receptor/cAMP signaling and ion channels. Mol Cell Endocrinol. 430:89–96. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Tong Y, Gong M, Lu Y, Wang C, Zhou M, Yang Q, Mao T and Tong N: Activation of PPARβ/δ protects pancreatic β cells from palmitate-induced apoptosis by upregulating the expression of GLP-1 receptor. Cell Signal. 26:268–278. 2014. View Article : Google Scholar : PubMed/NCBI | |
Boutant M, Ramos OH, Tourrel-Cuzin C, Movassat J, Llias A, Vallois D, Planchais J, Pegorier JP, Schuit F, Petit PX, et al: COUP-TFII controls mouse pancreatic β-cell mass through GLP-1-β-catenin signaling pathways. PLoS One. 7:e308472012. View Article : Google Scholar : PubMed/NCBI | |
Nelson WJ and Nusse R: Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 303:1483–1487. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nusse R: Wnt signaling in disease and in development. Cell Res. 15:28–32. 2005. View Article : Google Scholar : PubMed/NCBI | |
Heller C, Kuhn MC, Mulders-Opgenoorth B, Schott M, Willenberg HS, Scherbaum WA and Schinner S: Exendin-4 upregulates the expression of wnt-4, a novel regulator of pancreatic β-cell proliferation. Am J Physiol Endocrinol Metab. 301:E864–E872. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xue G, Romano E, Massi D and MandaIa M: Wnt/β-catenin signaling in melanoma: Preclinical rationale and novel therapeutic insights. Cancer Treat Rev. 49:1–12. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schinner S, Ulgen F, Papewalis C, Schott M, Woelk A, Vidal-Puig A and Scherbaum WA: Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adipicyte-derived wnt signaling molecules. Diabetologia. 51:147–154. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bader E, Migliorini A, Gegg M, Moruzzi N, Gerdes J, Roscioni SS, Bakhti M, Brandl E, Irmler M, Beckers J, et al: Indentification of proliferative and mature β-cells in the islets of Langerhans. Nature. 535:430–434. 2016. View Article : Google Scholar : PubMed/NCBI | |
Krutzfeldt J and Stoffel M: Regulation of wingless-type MMTV integration site family (WNT) signaling in pancreatic islets from wild-type and obese mice. Diabetologia. 53:123–127. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gui S, Yuan G, Wang L, Zhou L, Xue Y, Yu Y, Zhang J, Zhang M, Yang Y and Wang DW: Wnt3a regulates proliferation, apoptosis and function of pancreatic NIT-1 β cells via activation of IRS2/PI3K signaling. J Cell Biochem. 114:1488–1497. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rulifson IC, Karnik SK, Heiser PW, Ten Berge D, Chen H, Gu X, Taketo MM, Nusse R, Hebro M and Kim SK: Wnt signaling regulates pancreatic beta cell proliferation. Proc Nati Acad Sci USA. 104:6247–6252. 2007. View Article : Google Scholar | |
He X, Han W, Hu SX, Zhang MZ, Hua JL and Peng S: Canonical wnt signaling pathway contributes to the proliferation and survival in porcine pancreatic stem cells (PSCs). Cell Tissue Res. 362:379–388. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sarkar S and Mandal C, Sangwan R and Mandal C: Coupling G2/M arrest to the wnt/β-catenin pathway restrains pancreatic adcnocarcinoma. Endocr Relat Cancer. 21:113–125. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang YQ, Morris JP, Yan W, Schofield HK, Gurney A, Simeone DM, Millar SE, Hoey T, Hebrok M and Pasca di Magliano M: Canonical wnt signaling is required for pancreatic carcinogenesis. Cancer Res. 73:4909–4922. 2013. View Article : Google Scholar : PubMed/NCBI | |
Afelik S, Pool B, Schmerr M, Penton C and Jensen J: Wnt7b is required for epithelial progenitor growth and operates during epithelial-to-mesenchymal signaling in pancreatic development. Dev Biol. 399:204–217. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lyssenko V: The transcription factor 7-like 2 gene and increased risk of type 2 diabetes: An update. Curr Opin Clin Nutr Metab Care. 11:385–392. 2008. View Article : Google Scholar : PubMed/NCBI | |
Takamoto I, Kubota N, Nakaya K, Kumagai K, Hashimoto S, Kubota T, Inoue M, Kajiwara E, Katsuyama H, Obata A, et al: TCF7L2 in mouse pancreatic beta cells plays a crucial role in glucose homeostasis by regulating beta cell mass. Diabetologia. 57:542–553. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Oskolkov N, Shcherbina L, Ratti J, Kock KH, Su J, Martin B, Oskolkova MZ, Goransson O, Bacon J, et al: HMGB1 binds to the rs7903146 locus in TCF7L2 in human pancreatic islets. Mol Cell Endocrinol. 430:138–145. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yao DD, Yang L, Wang Y, Liu C, Wei YJ, Jia XB, Yin W and Shu L: Geniposide promotes beta-cell regeneration and survival through regulating β-catenin/TCF7L2 pathway. Cell Death Dis. 6:e17462015. View Article : Google Scholar : PubMed/NCBI | |
Kiu H and Nicholson SE: Biology and significance of the JAK/STAT signaling pathways. Growth Factors. 30:88–106. 2012. View Article : Google Scholar : PubMed/NCBI | |
O'Shea JJ and Plenge R: JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity. 36:542–550. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhuang S: Regulation of STAT signaling by acetylation. Cell Signal. 25:1942–1931. 2013. View Article : Google Scholar | |
Brooks AJ, Dai W, O'Mara ML, Abankwa D, Chhabra Y, Pelekanos RA, Gardon O, Tunny KA, Blucher KM, Morton CJ, et al: Mechanism of activation of protein kinase JAK2 by the growth hormone recetor. Science. 344:12497832014. View Article : Google Scholar : PubMed/NCBI | |
Liongue C, Taznin T and Ward AC: Signaling via the CytoR/JAK/STAT/SOCS pathway: Emergence during evolution. Mol Immunol. 71:166–175. 2016. View Article : Google Scholar : PubMed/NCBI | |
Linossi EM, Babon JJ, Hilton DJ and Nicholson SE: Suppression of cytokine signaling: The SOCS perspective. Cytokine Growth Factor Rev. 24:241–248. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shuai K and Liu B: Regulation of gene-activation pathways by PIAS protein in the immune system. Nat Rev Immunol. 5:593–605. 2005. View Article : Google Scholar : PubMed/NCBI | |
Trengove MC and Ward AC: SOCS proteins in development and disease. Am J Exp Clin Immunol. 2:1–29. 2013. | |
Fleyel T, Brorsson C, Nielsen LB, Miani M, Bang-Berthelsen CH, Friedrichsen M, Overgaard AJ, Berchtold LA, Wiberg A, Poulsen P, et al: CTSH regulates β-cell function and disease progression in newly diagnosed type 1 diabetes patients. Proc Natl Acad Sci USA. 111:10305–10310. 2014. View Article : Google Scholar : PubMed/NCBI | |
Stanley WJ, Litwak SA, Quah HS, Tan SM, Kay TW, Tiganis T, de Haan JB, Thomas HE and Gurzov EN: Inactivation of protein tyrosine phosphatases enhances interferon signaling in pancreatic islets. Diabetes. 64:2489–2496. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chou DH, Vetere A, Choudhary A, Scully SS, Schenone M, Tang A, Gomez R, Burns SM, Lundh M, Vital T, et al: Kinase-independent small-molecule inhibition of JAK-STAT signaling. J Am Chem Soc. 137:7929–7934. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Kleinberger JW, Takane KK, Salim F, Fiaschi-Taesch N, Pappas K, Parsons R, Jiang J, Zhang Y, Liu H, et al: Augmented stat5 signaling bypasses multiple impediments to lactogen-mediated proliferation in human β-cells. Diabetes. 64:3784–3797. 2015. View Article : Google Scholar : PubMed/NCBI | |
Choi D, Schroer SA, Lu SY, Wang L, Wu X, Liu Y, Zhang Y, Gaisano HY, Wagner KY, Wu H, et al: Erythropoietin protects against diabetes through direct effects on pancreatic beta cells. J Exp Med. 207:2831–2842. 2010. View Article : Google Scholar : PubMed/NCBI | |
De-Groef S, Renmans D, Cai Y, Leuckx G, Roels S, Staels W, GradwohI G, Baeyens L, Heremans Y, Martens GA, et al: STAT3 modulates β-cell cycling in injured mouse pancreas and protects against DNA damage. Cell Death Dis. 7:e22722016. View Article : Google Scholar : PubMed/NCBI | |
Shao L, Zhang P, Zhang Y and Ma A: Inflammatory unbalance of TLR3 and TLR4 in PCI patients with or without type 2 diabetes mellitus. Immunol Lett. 161:81–88. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kruger B, Yin N, Zhang N, Yadav A, Coward W, Lai G, Zang W, S Heeger P, Bromberg JS, Murphy B, et al: Islet-expressed TLR2 and TLR4 sense injury and mediate early graft failure after transplantation. Eur J Immunol. 40:2914–2924. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Haghiac M, Glazebrook P, Minium J, Catalano PM and Hanguel-de Mouzon S: Saturated fatty acids enhance TLR4 immune pathways in human trophoblasts. Hum Reprod. 30:2152–2159. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sepehri Z, Kiani Z, Nasiri AA, Mashhadi MA, Javadian F, Haghighi A, Kohan F, Bahari A and Sargazi A: Human Toll like receptor 4 gene expression of PBMCs in diabetes mellitus type 2 patients. Cell Mol Biol. 61:92–95. 2015.PubMed/NCBI | |
Verzila D, Cappuccino L, D'Amato E, Villaggio B, Gianiorio F, Mij M, Simonato A, Viazzi F, Salvidia G and Garibotto G: Enhanced glomerular Toll-like receptor 4 expression and signaling in patients with type 2 diabetic nephropathy and microalbuminuria. Kidney Int. 86:1229–1243. 2014. View Article : Google Scholar : PubMed/NCBI | |
Baldan A, Ferronato S, Olivato S, Malerba G, Scuro A, Veraldi GF, Gelati M, Ferrari S, Mariotto S, Pignati PF, et al: Cyclooxygenase 2, toll-like receptor 4 and interleukin 1β mRNA expression in atherosclerotic plaques of type 2 diabetic patients. Inflamm Res. 63:851–858. 2014. View Article : Google Scholar : PubMed/NCBI |