1
|
Chtourou Y, Aouey B, Aroui S, Kebieche M
and Fetoui H: Anti-apoptotic and anti-inflammatory effects of
naringin on cisplatin-induced renal injury in the rat. Chem Biol
Interact. 243:1–9. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yoshinaga A, Kajiya N, Oishi K, Kamada Y,
Ikeda A, Chigwechokha PK, Kibe T, Kishida M, Kishida S, Komatsu M
and Shiozaki K: NEU3 inhibitory effect of naringin suppresses
cancer cell growth by attenuation of EGFR signaling through GM3
ganglioside accumulation. Eur J Pharmacol. 782:21–29. 2016.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Kandhare AD, Ghosh P and Bodhankar SL:
Naringin, a flavanone glycoside, promotes angiogenesis and inhibits
endothelial apoptosis through modulation of inflammatory and growth
factor expression in diabetic foot ulcer in rats. Chem Biol
Interact. 219:101–112. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ikemura M, Sasaki Y, Giddings JC and
Yamamoto J: Preventive effects of hesperidin, glucosyl hesperidin
and naringin on hypertension and cerebral thrombosis in
stroke-prone spontaneously hypertensive rats. Phytother Res.
26:1272–1277. 2012. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Xiao Y, Li LL, Wang YY, Guo JJ, Xu WP,
Wang YY and Wang Y: Naringin administration inhibits platelet
aggregation and release by reducing blood cholesterol levels and
the cytosolic free calcium concentration in hyperlipidemic rabbits.
Exp Ther Med. 8:968–972. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Mao Z, Gan C, Zhu J, Ma N, Wu L, Wang L
and Wang X: Anti-atherosclerotic activities of flavonoids from the
flowers of Helichrysum arenarium L. MOENCH through the pathway of
anti-inflammation. Bioorg Med Chem Lett. 27:2812–2817. 2017.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Zamanian M, Hajizadeh M, Shamsizadeh A,
Moemenzadeh M, Amirteimouri M, Elshiekh M and Allahtavakoli M:
Effects of naringin on physical fatigue and serum MMP-9
concentration in female rats. Pharm Biol. 55:423–427. 2017.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang S, Bao YR, Li TJ, Yu T, Chang X, Yang
GL and Meng XS: Mechanism of fructus aurantii flavonoids promoting
gastrointestinal motility: From organic and inorganic endogenous
substances combination point of view. Pharmacogn Mag. 13:372–377.
2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Guo D, Wang J, Wang X, Luo H, Zhang H, Cao
D and Chen L: Double directional adjusting estrogenic effect of
naringin from Rhizoma drynariae (Gusuibu). J Ethnopharmacol.
138:451–457. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Toth PP, Patti AM, Nikolic D, Giglio RV,
Castellino G, Biancucci T, Geraci F, David S, Montalto G, Rizvi A
and Rizzo M: Bergamot reduces plasma lipids, atherogenic small
dense LDL and subclinical atherosclerosis in subjects with moderate
hypercholesterolemia: A 6 months prospective study. Front
Pharmacol. 6:2992016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Baskaran G, Salvamani S, Ahmad SA,
Shaharuddin NA, Pattiram PD and Shukor MY: HMG-CoA reductase
inhibitory activity and phytocomponent investigation of Basella
alba leaf extract as a treatment for hypercholesterolemia. Drug Des
Devel Ther. 9:509–517. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Nyane NA, Tlaila TB, Malefane TG, Ndwandwe
DE and Owira PMO: Metformin-like antidiabetic, cardio-protective
and non-glycemic effects of naringenin: Molecular and
pharmacological insights. Eur J Pharmacol. 803:103–111. 2017.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Song N, Zhao Z, Ma X, Sun X, Ma J, Li F,
Sun L and Lv J: Naringin promotes fracture healing through
stimulation of angiogenesis by regulating the VEGF/VEGFR-2
signaling pathway in osteoporotic rats. Chem Biol Interact.
261:11–17. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fan J, Li J and Fan Q: Naringin promotes
differentiation of bone marrow stem cells into osteoblasts by
upregulating the expression levels of microRNA-20a and
downregulating the expression levels of PPARγ. Mol Med Rep.
12:4759–4765. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li N, Jiang Y, Wooley PH, Xu Z and Yang
SY: Naringin promotes osteoblast differentiation and effectively
reverses ovariectomy-associated osteoporosis. J Orthop Sci.
18:478–485. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lin F, Xue D, Xie T and Pan Z: HMGB1
promotes cellular chemokine synthesis and potentiates mesenchymal
stromal cell migration via Rap1 activation. Mol Med Rep.
14:1283–1289. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lin F, Zhang W, Xue D, Zhu T, Li J, Chen
E, Yao X and Pan Z: Signaling pathways involved in the effects of
HMGB1 on mesenchymal stem cell migration and osteoblastic
differentiation. Int J Mol Med. 37:789–797. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Feng L, Xue D, Chen E, Zhang W, Gao X, Yu
J, Feng Y and Pan Z: HMGB1 promotes the secretion of multiple
cytokines and potentiates the osteogenic differentiation of
mesenchymal stem cells through the Ras/MAPK signaling pathway. Exp
Ther Med. 12:3941–3947. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang H, Kot A, Lay YE, Fierro FA, Chen H,
Lane NE and Yao W: Acceleration of fracture healing by
overexpression of basic fibroblast growth factor in the mesenchymal
stromal cells. Stem Cells Transl Med. 6:1880–1893. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li X, He L, Yue Q, Lu J, Kang N, Xu X,
Wang H and Zhang H: MiR-9-5p promotes MSC migration by activating
β-catenin signaling pathway. Am J Physiol Cell Physiol.
313:C80–C93. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Luan XY, Zhang GB, Hu YM, Yu GH, Wang MY,
Duan QY, Duan X and Zhang XG: Effects of MSC on cell cycle,
phenotype and cytokine secretion of T cells activated by PHA. Xi
Bao Yu Fen Zi Mian Yi Xue Za Zhi. 23:402–405. 2007.(In Chinese).
PubMed/NCBI
|
22
|
Rocks O, Peyker A and Bastiaens PI:
Spatio-temporal segregation of Ras signals: One ship, three
anchors, many harbors. Curr Opin Cell Biol. 18:351–357. 2006.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Thatcher JD: The Ras-MAPK signal
transduction pathway. Sci Signal. 3:tr1. 2010. View Article : Google Scholar
|
24
|
Khosravi-Far R and Der CJ: The Ras signal
transduction pathway. Cancer Metastasis Rev. 13:67–89. 1994.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhou J, Zhang S, Chen X, Zheng X, Yao Y,
Lu G and Zhou J: Palbociclib, a selective CDK4/6 inhibitor,
enhances the effect of selumetinib in RAS-driven non-small cell
lung cancer. Cancer Lett. 408:130–137. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li X, Li D, Wikstrom JD, Pivarcsi A,
Sonkoly E, Ståhle M and Landén NX: MicroRNA-132 promotes fibroblast
migration via regulating RAS p21 protein activator 1 in skin wound
healing. Sci Rep. 7:77972017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gao D, Xie J, Zhang J, Feng C, Yao B, Ma
K, Li J, Wu X, Huang S and Fu X: MSC attenuate diabetes-induced
functional impairment in adipocytes via secretion of insulin-like
growth factor-1. Biochem Biophys Res Commun. 452:99–105. 2014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Van Coillie E, VanDamme J and Opdenakker
G: The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth
Factor Rev. 10:61–86. 1999. View Article : Google Scholar : PubMed/NCBI
|
29
|
Baba M, Imai T, Nishimura M, Kakizaki M,
Takagi S, Hieshima K, Nomiyama H and Yoshie O: Identification of
CCR6, the specific receptor for a novel lymphocyte-directed CC
chemokine LARC. J Biol Chem. 272:14893–14898. 1997. View Article : Google Scholar : PubMed/NCBI
|
30
|
Doucet M, Jayaraman S, Swenson E, Tusing
B, Weber KL and Kominsky SL: CCL20/CCR6 signaling regulates bone
mass accrual in mice. J Bone Miner Res. 31:1381–1390. 2016.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Hieshima K, Imai T, Opdenakker G, Van
Damme J, Kusuda J, Tei H, Sakaki Y, Takatsuki K, Miura R, Yoshie O
and Nomiyama H: Molecular cloning of a novel human CC chemokine
liver and activation-regulated chemokine (LARC) expressed in liver.
Chemotactic activity for lymphocytes and gene localization on
chromosome 2. J Biol Chem. 272:5846–5853. 1997. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kim GW, Han MS, Park HR, Lee EJ, Jung YK,
Usmani SE, Ulici V, Han SW and Beier F: CXC chemokine ligand 12a
enhances chondrocyte proliferation and maturation during
endochondral bone formation. Osteoarthritis Cartilage. 23:966–974.
2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Le Y, Zhou Y, Iribarren P and Wang J:
Chemokines and chemokine receptors: Their manifold roles in
homeostasis and disease. Cell Mol Immunol. 1:95–104.
2004.PubMed/NCBI
|
34
|
Graham GJ and Locati M: Regulation of the
immune and inflammatory responses by the ‘atypical’ chemokine
receptor D6. J Pathol. 229:168–175. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chang MS, McNinch J, Basu R and Simonet S:
Cloning and characterization of the human neutrophil-activating
peptide (ENA-78) gene. J Biol Chem. 269:25277–25282.
1994.PubMed/NCBI
|
36
|
Nedeau AE, Bauer RJ, Gallagher K, Chen H,
Liu ZJ and Velazquez OC: A CXCL5- and bFGF-dependent effect of
PDGF-B-activated fibroblasts in promoting trafficking and
differentiation of bone marrow-derived mesenchymal stem cells. Exp
Cell Res. 314:2176–2186. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Catusse J, Struyf S, Wuyts A, Weyler M,
Loos T, Gijsbers K, Gouwy M, Proost P and Van Damme J: Rabbit
neutrophil chemotactic protein (NCP) activates both CXCR1 and CXCR2
and is the functional homologue for human CXCL6. Biochem Pharmacol.
68:1947–1955. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Verbeke H, Struyf S, Berghmans N, Van
Coillie E, Opdenakker G, Uyttenhove C, Van Snick J and Van Damme J:
Isotypic neutralizing antibodies against mouse GCP-2/CXCL6 inhibit
melanoma growth and metastasis. Cancer Lett. 302:54–62. 2011.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Kuemmerle JF and Zhou H: Insulin-like
growth factor-binding protein-5 (IGFBP-5) stimulates growth and
IGF-I secretion in human intestinal smooth muscle by Ras-dependent
activation of p38 MAP kinase and Erk1/2 pathways. J Biol Chem.
277:20563–20571. 2002. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bradley EW, Ruan MM, Vrable A and Oursler
MJ: Pathway crosstalk between Ras/Raf and PI3K in promotion of
M-CSF-induced MEK/ERK-mediated osteoclast survival. J Cell Biochem.
104:1439–1451. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Pham TH, Kim MS, Le MQ, Song YS, Bak Y,
Ryu HW, Oh SR and Yoon DY: Fargesin exerts anti-inflammatory
effects in THP-1 monocytes by suppressing PKC-dependent AP-1 and
NF-kB signaling. Phytomedicine. 24:96–103. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang YJ, Zhang HQ, Han HL, Zou YY, Gao QL
and Yang GT: Taxifolin enhances osteogenic differentiation of human
bone marrow mesenchymal stem cells partially via NF-κB pathway.
Biochem Biophys Res Commun. 490:36–43. 2017. View Article : Google Scholar : PubMed/NCBI
|