How pH is regulated during amelogenesis in dental fluorosis (Review)
- Authors:
- Mei Ji
- Lili Xiao
- Le Xu
- Shengyun Huang
- Dongsheng Zhang
-
Affiliations: Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China - Published online on: September 11, 2018 https://doi.org/10.3892/etm.2018.6728
- Pages: 3759-3765
This article is mentioned in:
Abstract
Aoba T and Fejerskov O: Dental fluorosis: Chemistry and biology. Crit Rev Oral Biol Med. 13:155–170. 2002. View Article : Google Scholar : PubMed/NCBI | |
Beltrán-Aguilar ED, Barker L and Dye BA: Prevalence and severity of dental fluorosis in the United States, 1999–2004. NCHS Data Brief. 1–8. 2010. | |
Denbesten P and Li W: Chronic fluoride toxicity: Dental fluorosis. Monogr Oral Sci. 22:81–96. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sierant ML and Bartlett JD: Stress response pathways in ameloblasts: Implications for amelogenesis and dental fluorosis. Cells. 1:631–645. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mohamed AR, Thomson WM and Mackay TD: An epidemiological comparison of Dean's index and the developmental defects of enamel (DDE) index. J Public Health Dent. 70:344–347. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lyaruu DM, Medina JF, Sarvide S, Bervoets TJ, Everts V, Denbesten PK, Smith CE and Bronckers AL: Barrier formation: Potential molecular mechanism of enamel fluorosis. J Dent Res. 93:94–102. 2014. View Article : Google Scholar | |
Smith CE: Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med. 9:128–161. 1998. View Article : Google Scholar : PubMed/NCBI | |
Paine ML, Snead ML, Wang HJ, Abuladze N, Pushkin A, Liu W, Kao LY, Wall SM, Kim YH and Kurtz I: Role of NBCe1 and AE2 in secretory ameloblasts. J Dent Res. 87:391–395. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lacruz RS, Nanci A, Kurtz I, Wright JT and Paine ML: Regulation of pH during amelogenesis. Calcif Tissue Int. 86:91–103. 2010. View Article : Google Scholar : PubMed/NCBI | |
Simmer JP and Fincham AG: Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med. 6:84–108. 1995. View Article : Google Scholar : PubMed/NCBI | |
Sasaki S, Takagi T and Suzuki M: Cyclical changes in pH in bovine developing enamel as sequential bands. Arch Oral Biol. 36:227–231. 1991. View Article : Google Scholar : PubMed/NCBI | |
Takagi T, Ogasawara T, Tagami J, Akao M, Kuboki Y, Nagai N and LeGeros RZ: pH and carbonate levels in developing enamel. Connect Tissue Res. 38:181–205. 1998. View Article : Google Scholar : PubMed/NCBI | |
Bawden JW, Crenshaw MA, Wright JT and LeGeros RZ: Consideration of possible biologic mechanisms of fluorosis. J Dent Res. 74:1349–1352. 1995. View Article : Google Scholar : PubMed/NCBI | |
Robinson C, Connell S and Kirkham J: Dental enamel-a biological ceramic: Regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy. J Mater Chem. 14:2242–2248. 2004. View Article : Google Scholar | |
Robinson C, Connell S, Kirkham J, Brookes SJ, Shore RC and Smith AM: The effect of fluoride on the developing tooth. Caries Res. 38:268–276. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bronckers AL, Lyaruu DM and DenBesten PK: The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. Crit Rev Oral Biol Med. 88:877–893. 2009. | |
Yan Q, Zhang Y, Li W and Denbesten PK: Micromolar fluoride alters ameloblast lineage cells in vitro. J Dent Res. 86:336–340. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wei W, Gao Y, Wang C, Zhao L and Sun D: Excessive fluoride induces endoplasmic reticulum stress and interferes enamel proteinases secretion. Environ Toxicol. 28:332–341. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Li W, Chi HS, Chen J and Denbesten PK: JNK/c-Jun signaling pathway mediates the fluoride-induced down-regulation of MMP-20 in vitro. Matrix Biol. 26:633–641. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jacinto-Alemán LF, Hernández-Guerrero JC, Trejo-Solís C, Jiménez-Farfán MD and Fernández-Presas AM: In vitro effect of sodium fluoride on antioxidative enzymes and apoptosis during murine odontogenesis. J Oral Pathol Med. 39:709–714. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang T, Zhang Y, Li Y, Hao Y, Zhou M, Dong N and Duan X: High amounts of fluoride induce apoptosis/cell death in matured ameloblast-like LS8 cells by downregulating Bcl-2. Arch Oral Biol. 58:1165–1173. 2013. View Article : Google Scholar : PubMed/NCBI | |
Matsuo S, Inai T, Kurisu K, Kiyomiya K and Kurebe M: Influence of fluoride on secretory pathway of the secretory ameloblast in rat incisor tooth germs exposed to sodium fluoride. Arch Toxicol. 70:420–429. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hannas AR, Pereira JC, Granjeiro JM and Tjäderhane L: The role of matrix metalloproteinases in the oral environment. Acta Odontol Scand. 65:1–13. 2007. View Article : Google Scholar : PubMed/NCBI | |
Denbesten PK and Heffernan LM: Enamel proteases in secretory and maturation enamel of rats ingesting 0 and 100 PPM fluoride in drinking water. Adv Dent Res. 3:199–202. 1989. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Zhang Y, He P, Kim J, Schneider R, Bronckers AL, Lyaruu DM and DenBesten PK: NBCe1 in mouse and human ameloblasts may be indirectly regulated by fluoride. J Dent Res. 90:782–787. 2011. View Article : Google Scholar : PubMed/NCBI | |
Duan X, Mao Y, Wen X, Yang T and Xue Y: Excess fluoride interferes with chloride-channel-dependent endocytosis in ameloblasts. J Dent Res. 90:175–180. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nanci A: Ten Cate's oral histology: Development, structure, and function. Ebook, MosbyElsevier. 1–432. 2007. | |
Hu JC, Chun YH, Al Hazzazzi T and Simmer JP: Enamel formation and amelogenesis imperfecta. Cells Tissues Organs. 186:78–85. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sharma R, Tsuchiya M, Skobe Z, Tannous BA and Bartlett JD: The acid test of fluoride: How pH modulates toxicity. PLoS One. 5:e108952010. View Article : Google Scholar : PubMed/NCBI | |
Varga G, Kerémi B, Bori E and Földes A: Function and repair of dental enamel-potential role of epithelial transport processes of ameloblasts. Pancreatology. 15 Suppl 4:S55–S60. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nanci A and Smith CE: Development and calcification of enamel. Calcification in biological systems. 313–343. 1992. | |
Bartlett JD and Simmer JP: Proteinases in developing dental enamel. Crit Rev Oral Biol Med. 10:425–441. 1999. View Article : Google Scholar : PubMed/NCBI | |
Smith CE, Issid M, Margolis HC and Moreno EC: Developmental changes in the pH of enamel fluid and its effects on matrix-resident proteinases. Adv Dent Res. 10:159–169. 1996. View Article : Google Scholar : PubMed/NCBI | |
Simmer JP, Fukae M, Tanabe T, Yamakoshi Y, Uchida T, Xue J, Margolis HC, Shimizu M, DeHart BC, Hu CC and Bartlett JD: Purification, characterization, and cloning of enamel matrix serine proteinase 1. J Dent Res. 77:377–386. 1998. View Article : Google Scholar : PubMed/NCBI | |
Smith CE, Chong DL, Bartlett JD and Margolis HC: Mineral acquisition rates in developing enamel on maxillary and mandibular incisors of rats and mice: Implications to extracellular acid loading as apatite crystals mature. J Bone Miner Res. 20:240–249. 2005. View Article : Google Scholar : PubMed/NCBI | |
Damkier HH, Josephsen K, Takano Y, Zahn D, Fejerskov O and Frische S: Fluctuations in surface pH of maturing rat incisor enamel are a result of cycles of H(+)-secretion by ameloblasts and variations in enamel buffer characteristics. Bone. 60:227–234. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bronckers AL, Lyaruu DM, Guo J, Bijvelds MJ, Bervoets TJ, Zandieh-Doulabi B, Medina JF, Li Z, Zhang Y and DenBesten PK: Composition of mineralizing incisor enamel in CFTR-deficient mice. Eur J Oral Sci. 123:9–16. 2015. View Article : Google Scholar : PubMed/NCBI | |
Smith CE, Nanci A and Moffat P: Evidence by signal peptide trap technology for the expression of carbonic anhydrase 6 in rat incisor enamel organs. Eur J Oral Sci. 114 Suppl 1:(S147): S153 Discussion 164–165. 380–381. 2006. | |
Hou J, Situ Z and Duan X: ClC chloride channels in tooth germ and odontoblast-like MDPC-23 cells. Arch Oral Biol. 53:874–878. 2008. View Article : Google Scholar : PubMed/NCBI | |
Su X, Yang F, Duan X, Yuan L, Li Y and Wu L: Expression of CLC-7 during mouse tooth development. J Pract Stomatol. 24:342–345. 2008.(In Chinese). | |
Duan X, Mao Y, Yang T, Wen X, Wang H, Hou J, Xue Y and Zhang R: ClC-5 regulates dentin development through TGF-beta1 pathway. Arch Oral Biol. 54:1118–1124. 2009. View Article : Google Scholar : PubMed/NCBI | |
Josephsen K, Takano Y, Frische S, Praetorius J, Nielsen S, Aoba T and Fejerskov O: Ion transporters in secretory and cyclically modulating ameloblasts: A new hypothesis for cellular control of preeruptive enamel maturation. Am J Physiol Cell Physiol. 299:C1299–C1307. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lacruz RS, Nanci A, White SN, Wen X, Wang H, Zalzal SF, Luong VQ, Schuetter VL, Conti PS, Kurtz I and Paine ML: The sodium bicarbonate cotransporter (NBCe1) is essential for normal development of mouse dentition. J Biol Chem. 285:24432–24438. 2010. View Article : Google Scholar : PubMed/NCBI | |
Okumura R, Shibukawa Y, Muramatsu T, Hashimoto S, Nakagawa K, Tazaki M and Shimono M: Sodium-calcium exchangers in rat ameloblasts. J Pharmacol Sci. 112:223–230. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bronckers AL, Guo J, Zandieh-Doulabi B, Bervoets TJ, Lyaruu DM, Li X, Wangemann P and DenBesten P: Developmental expression of SLC26A4 (Pendrin) during amelogenesis in developing rodent teeth. Eur J Oral Sci. 119 Suppl 1:S185–S192. 2011. View Article : Google Scholar | |
Hu P, Lacruz RS, Smith CE, Smith SM, Kurtz I and Paine ML: Expression of the sodium/calcium/potassium exchanger, NCKX4, in ameloblasts. Cells Tissues Organs. 196:501–509. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lacruz RS, Smith CE, Moffatt P, Chang EH, Bromage TG, Bringas P Jr, Nanci A, Baniwal SK, Zabner J, Welsh MJ, et al: Requirements for ion and solute transport, and pH regulation during enamel maturation. J Cell Physiol. 227:1776–1785. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lacruz RS, Brookes SJ, Wen X, Jimenez JM, Vikman S, Hu P, White SN, Lyngstadaas SP, Okamoto CT, Smith CE and Paine ML: Adaptor protein complex 2 (ap-2) mediated, clathrin dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis. J Bone Miner Res. 28:672–687. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lacruz RS, Smith CE, Kurtz I, Hubbard MJ and Paine ML: New paradigms on the transport functions of maturation-stage ameloblasts. J Dent Res. 92:122–129. 2013. View Article : Google Scholar : PubMed/NCBI | |
Duan X: Ion channels, channelopathies, and tooth formation. J Dent Res. 93:117–125. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bronckers AL, Lyaruu D, Jalali R, Medina JF, Zandieh-Doulabi B and DenBesten PK: Ameloblast modulation and transport of Cl-, Na+, and K+ during amelogenesis. J Dent Res. 94:1740–1747. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wright JT, Kiefer CL, Hall KI and Grubb BR: Abnormal enamel development in a cystic fibrosis transgenic mouse model. J Dent Res. 75:966–973. 1996. View Article : Google Scholar : PubMed/NCBI | |
Sui W, Boyd C and Wright JT: Altered pH regulation during enamel development in the cystic fibrosis mouse incisor. J Dent Res. 82:388–392. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bronckers AL, Kalogeraki L, Jorna HJ, Wilke M, Bervoets TJ, Lyaruu DM, Zandieh-Doulabi B, Denbesten PK and de Jonge H: The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in maturation stage ameloblasts, odontoblasts and bone cells. Bone. 46:1188–1196. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ and Muallem S: Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol. 6:343–350. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mount DB and Romero MF: The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch. 447:710–721. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ishiguro H, Steward MC, Naruse S, Ko SB, Goto H, Case RM, Kondo T and Yamamoto A: CFTR functions as a bicarbonate channel in pancreatic duct cells. J Gen Physiol. 133:315–326. 2009. View Article : Google Scholar : PubMed/NCBI | |
Shcheynikov N, Kim KH, Kim KM, Dorwart MR, Ko SB, Goto H, Naruse S, Thomas PJ and Muallem S: Dynamic control of cystic fibrosis transmembrane conductance regulator Cl(−)/HCO3(−) selectivity by external Cl(−). J Biol Chem. 279:21857–21865. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pushkin A and Kurtz I: SLC4 base (HCO3−, CO32−) transporters: Classification function, structure, genetic diseases, and knockout models. Am J Physiol Renal Physiol. 290:F580–F599. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jalali R, Guo J, Zandieh-Doulabi B, Bervoets TJ, Paine ML, Boron WF, Parker MD, Bijvelds MJ, Medina JF, DenBesten PK and Bronckers AL: NBCe1 (SLC4A4) a potential pH regulator in enamel organ cells during enamel development in the mouse. Cell Tissue Res. 358:433–442. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bronckers AL, Lyaruu DM, Jansen ID, Medina JF, Kellokumpu S, Hoeben KA, Gawenis LR, Oude-Elferink RP and Everts V: Localization and function of the anion exchanger Ae2 in developing teeth and orofacial bone in rodents. J Exp Zool B Mol Dev Evol. 312B:1–387. 2009. View Article : Google Scholar | |
Arquitt CK, Boyd C and Wright JT: Cystic fibrosis transmembrane regulator gene (CFTR) is associated with abnormal enamel formation. J Dent Res. 81:492–496. 1999. View Article : Google Scholar | |
Gawenis LR, Ledoussal C, Judd LM, Prasad V, Alper SL, Stuart-Tilley A, Woo AL, Grisham C, Sanford LP, Doetschman T, et al: Mice with a targeted disruption of the AE2 Cl-/HCO3- exchanger are achlorhydric. J Biol Chem. 279:30531–30539. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dinour D, Chang MH, Satoh J, Smith BL, Angle N, Knecht A, Serban I, Holtzman EJ and Romero MF: A novel missense mutation in the sodium bicarbonate cotransporter (NBCe1/SLC4A4) causes proximal tubular acidosis and glaucoma through ion transport defects. J Biol Chem. 279:52238–52246. 2004. View Article : Google Scholar : PubMed/NCBI | |
Inatomi J, Horita H, Braverman N, Sekine T, Yamada H, Suzuki Y, Kawahara K, Moriyama N, Kudo A, Kawakami H, et al: Mutational and functional analysis of SLC4A4 in a patient with proximal renal tubular acidosis. Pflugers Arch. 448:438–444. 2004. View Article : Google Scholar : PubMed/NCBI | |
Royaux IE, Belyantseva IA, Wu T, Kachar B, Everett LA, Marcus DC and Green ED: Localization and functional studies of pendrin in the mouse inner ear provide insight about the etiology of deafness in pendred syndrome. J Assoc Res Otolaryngol. 4:394–404. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wall SM, Hassell KA, Royaux IE, Green ED, Chang JY, Shipley GL and Verlander JW: Localization of pendrin in mouse kidney. Am J Physiol Renal Physiol. 284:F229–F241. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wangemann P, Kim HM, Billings S, Nakaya K, Li X, Singh R, Sharlin DS, Forrest D, Marcus DC and Fong P: Developmental delays consistent with cochlear hypothyroidism contribute to failure to develop hearing in mice lacking Slc26a4/pendrin expression. Am J Physiol Renal Physiol. 297:F1435–F1447. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, Thakker RV, Guggino S and Guggino WB: Mice lacking renal chloride channel, CLC-5, are a model for Dent's disease, a nephrolithiasis disorder associated with defective receptormediated endocytosis. Hum Mol Genet. 9:2937–2945. 2000. View Article : Google Scholar : PubMed/NCBI | |
Duan X: Spatial-temporal distribution of CLC-5 in rat tooth germ development. J Dent Res. 83:27412004. | |
Guo J, Bervoets TJ, Henriksen K, Everts V and Bronckers AL: Null mutation of chloride channel 7 (Clcn7) impairs dental root formation but does not affect enamel mineralization. Cell Tissue Res. 363:361–370. 2016. View Article : Google Scholar : PubMed/NCBI | |
Leisle L, Ludwig CF, Wagner FA, Jentsch TJ and Stauber T: ClC-7 is a slowly voltage-gated 2Cl(−)/1H(+)-exchanger and requires Ostm1 for transport activity. EMBO J. 30:2140–2152. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lange PF, Wartosch L, Jentsch TJ and Fuhrmann JC: ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature. 440:220–223. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kornak U, Kasper D, Bösl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G and Jentsch TJ: Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 104:205–215. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kasper D, Planells-Cases R, Fuhrmann JC, Scheel O, Zeitz O, Ruether K, Schmitt A, Poët M, Steinfeld R, Schweizer M, et al: Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J. 24:1079–1091. 2005. View Article : Google Scholar : PubMed/NCBI | |
Steinberg BE, Huynh KK, Brodovitch A, Jabs S, Stauber T, Jentsch TJ and Grinstein S: A cation counterflux supports lysosomal acidification. J Cell Biol. 189:1171–1186. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wen X, Lacruz RS and Paine ML: Dental and cranial pathologies in mice lacking the Cl(−)/H(+)-exchanger ClC-7. Anat Rec (Hoboken). 298:1502–1508. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tripp BC, Smith K and Ferry JG: Carbonic anhydrae: New insights for an ancient enzyme. J Biol Chem. 276:48615–48618. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chegwidden WR and Carter ND: Introduction to the carbonic anhydrases. EXS. 90:14–28. 2000. | |
Lin HM, Nakamura H, Noda T and Ozawa H: Localization of H(+)-ATPase and carbonic anhydrase II in ameloblasts at maturation. Calcif Tissue Int. 55:38–45. 1994. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Zhou Y, Zhou X, Sun F, Gao B, Wan M, Zhou X, Sun J, Xu X, Cheng L, et al: MicroRNA 224 regulates ion transporter expression in ameloblasts to coordinate enamel mineralization. Mol Cell Biol. 35:2875–2890. 2015. View Article : Google Scholar : PubMed/NCBI | |
Brown WE, Edelman N and Tomzaic BB: Octacalcium phosphate as precursors in biomineral formation. Adv Dent Res. 1:306–313. 1987. View Article : Google Scholar : PubMed/NCBI | |
Kawase T and Suzuki A: Studies on the transmembrane migration of fluoride and its effects on proliferation of L-929 fibroblasts (L cells) in vitro. Arch Oral Biol. 34:103–107. 1989. View Article : Google Scholar : PubMed/NCBI | |
He H, Ganapathy V, Isales CM and Whitford GM: pH-dependent fluoride transport in intestinal brush border membrane vesicles. Biochim Biophys Acta. 1372:244–254. 1998. View Article : Google Scholar : PubMed/NCBI | |
Mittal M and Flora SJ: Effects of individual and combined exposure to sodium arsenite and sodium fluoride on tissue oxidative stress, arsenic and fluoride levels in male mice. Chem Biol Interact. 162:128–139. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jin XQ, Xu H, Shi HY, Zhang JM and Zhang HQ: Fluoride-induced oxidative stress of osteoblasts and protective effects of baicalein against fluoride toxicity. Biol Trace Elem Res. 116:81–89. 2007. View Article : Google Scholar : PubMed/NCBI | |
Varol E, Icli A, Aksoy F, Bas HA, Sutcu R, Ersoy IH, Varol S and Ozaydin M: Evaluation of total oxidative status and total antioxidant capacity in patients with endemic fluorosis. Toxicol Ind Health. 29:175–180. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sharma R, Tsuchiya M and Bartlett JD: Fluoride induces endoplasmic reticulum stress and inhibits protein synthesis and secretion. Environ Health Perspect. 116:1142–1146. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kubota K, Lee DH, Tsuchiya M, Young CS, Everett ET, Martinez-Mier EA, Snead ML, Nguyen L, Urano F and Bartlett JD: Fluoride induces endoplasmic reticulum stress in ameloblasts responsible for dental enamel formation. J Biol Chem. 280:23194–23202. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lyaruu DM, de Jong M, Bronckers AL and Wöltgens JH: Ultrastructure of in-vitro recovery of mineralization capacity of fluorotic enamel matrix in hamster tooth germs pre-exposed to fluoride in organ culture during the secretory phase of amelogenesis. Arch Oral Biol. 32:107–115. 1987. View Article : Google Scholar : PubMed/NCBI | |
Smith CE, Nanci A and Denbesten PK: Effects of chronic fluoride exposure on morphometric parameters defining the stages of amelogenesis and ameloblast modulation in rat incisors. Anat Rec. 237:243–258. 1993. View Article : Google Scholar : PubMed/NCBI | |
Zhou R, Zaki AE and Eisenmann DR: Morphometry and autoradiography of altered rat enamel protein processing due to chronic exposure to fluoride. Arch Oral Biol. 41:739–747. 1996. View Article : Google Scholar : PubMed/NCBI |