1
|
Friedman SL: Liver fibrosis-from bench to
bedside. J Hepatol. 38 Suppl 1:S38–S53. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ahmad A and Ahmad R: Understanding the
mechanism of hepatic fibrosis and potential therapeutic approaches.
Saudi J Gastroenterol. 18:155–167. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bonis PAL, Friedman SL and Kaplan MM: Is
liver fibrosis reversible? N Engl J Med. 344:452–454. 2001.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Berenguer M: Hepatitis C virus and liver
transplantation. Springer; 2014, View Article : Google Scholar : PubMed/NCBI
|
5
|
Hammel P, Couvelard A, O'Toole D, Ratouis
A, Sauvanet A, Fléjou JF, Degott C, Belghiti J, Bernades P, Valla
D, et al: Regression of liver fibrosis after biliary drainage in
patients with chronic pancreatitis and stenosis of the common bile
duct. N Engl J Med. 344:4182001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sobhy MMK, Mahmoud SS, El-Sayed SH, Rizk
EMA, Raafat A and Negm MSI: Impact of treatment with a protein
tyrosine kinase inhibitor (Genistein) on acute and chronic
experimental Schistosoma mansoni infection. Exp Parasitol.
185:115–123. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kong LJ, Li H, Du YJ, Pei FH, Hu Y, Zhao
LL and Chen J: Vatalanib, a tyrosine kinase inhibitor, decreases
hepatic fibrosis and sinusoidal capillarization in CCl4-induced
fibrotic mice. Mol Med Rep. 15:2604–2610. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Czaja AJ and Carpenter HA: Progressive
fibrosis during corticosteroid therapy of autoimmune hepatitis. J
Hepatol. 39:1631–1638. 2004. View Article : Google Scholar
|
9
|
Lieber CS: Role of oxidative stress and
antioxidant therapy in alcoholic and nonalcoholic liver diseases.
Adv Pharmacol. 38:601–628. 1996. View Article : Google Scholar
|
10
|
Sánchez-Valle V, Chávez-Tapia NC, Uribe M
and Méndez-Sánchez N: Role of oxidative stress and molecular
changes in liver fibrosis: A review. Curr Med Chem. 19:4850–4860.
2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Distler JH and Distler O: Tyrosine kinase
inhibitors for the treatment of fibrotic diseases such as systemic
sclerosis: Towards molecular targeted therapies. Ann Rheum Dis. 69
Suppl 1:i48–i51. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gebhardt R: Oxidative stress,
plant-derived antioxidants and liver fibrosis. Planta Med.
68:289–296. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Carragher NO, Unciti-Broceta A and Cameron
DA: Advancing cancer drug discovery towards more agile development
of targeted combination therapies. Future Med Chem. 4:87–105. 2012.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Kumar M and Sarin SK: Systematic review:
Combination therapies for treatment-naive chronic hepatitis B.
Aliment Pharmacol Ther. 27:11872008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhuo L, Liao M, Zheng L, He M, Huang Q,
Wei L, Huang R, Zhang S and Lin X: Combination therapy with
taurine, epigallocatechin gallate and genistein for protection
against hepatic fibrosis induced by alcohol in rats. Biol Pharm
Bull. 35:1802–1810. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Friedman SL: Mechanism of hepatic
fibrogenesis. Gastroenterology. 134:1655–1669. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bataller R and Brenner DA: Liver fibrosis.
J Clin Invest. 115:209–218. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li Y, Luo Y, Zhang X, Lin X, He M and Liao
M: Combined taurine, epigallocatechin gallate and genistein therapy
reduces HSC-T6 cell proliferation and modulates the expression of
fibrogenic factors. Int J Mol Sci. 14:20543–20554. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mallick P and Kuster B: Proteomics: A
pragmatic perspective. Nat Biotechnol. 28:695–709. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Song X, Bandow J, Sherman J, Baker JD,
Brown PW, McDowell MT and Molloy MP: iTRAQ experimental design for
plasma biomarker discovery. J Proteome Res. 7:2952–2958. 2008.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Glen A, Gan CS, Hamdy FC, Eaton CL, Cross
SS, Catto JW, Wright PC and Rehman I: iTRAQ-facilitated proteomic
analysis of human prostate cancer cells identifies proteins
associated with progression. J Proteome Res. 7:897–907. 2008.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Hanash SM, Bobek MP, Rickman DS, Williams
T, Rouillard JM, Kuick R and Puravs E: Integrating cancer genomics
and proteomics in the post-genome era. Proteomics. 2:69–75. 2015.
View Article : Google Scholar
|
23
|
Srinivas PR, Kramer BS and Srivastava S:
Trends in biomarker research for cancer detection. Lancet Oncol.
2:698–704. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Peterson GL: A simplification of the
protein assay method of Lowry et al. which is more generally
applicable. Anal Biochem. 83:346–356. 1977. View Article : Google Scholar : PubMed/NCBI
|
25
|
Cao W, Zhou Y, Li Y, Zhang X, He M, Zang
N, Zhou Y and Liao M: iTRAQ-based proteomic analysis of combination
therapy with taurine, epigallocatechin gallate, and genistein on
carbon tetrachloride-induced liver fibrosis in rats. Toxicol Lett.
232:233–245. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Cao W, Li Y, Li M, Zhang X and Liao M:
Txn1, Ctsd and Cdk4 are key proteins of combination therapy with
taurine, epigallocatechin gallate and genistein against liver
fibrosis in rats. Biomed Pharmacother. 85:611–619. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yang Z, Meng Q, Zhao Y, Han R, Huang S, Li
M, Wu X, Cai W and Wang H: Resveratrol promoted interferon-induced
growth inhibition and apoptosis of SMMC7721 cells by activating the
SIRT/STAT1. J Interferon Cytokine Res. 38:261–271. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zheng YZ, Xue MZ, Shen HJ, Li XG, Ma D,
Gong Y, Liu YR, Qiao F, Xie HY, Lian B, et al: PHF5A epigenetically
inhibits apoptosis to promote breast cancer progression. Cancer
Res. 78:3190–3206. 2018.PubMed/NCBI
|
29
|
Wingren AG, Parra E, Varga M, Kalland T,
Sjögren HO, Hedlund G and Dohlsten M: T cell activation pathways:
B7, LFA-3, and ICAM-1 shape unique T cell profiles. Crit Rev
Immunol. 15:235–253. 1995. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang K, Lin B, Brems JJ and Gamelli RL:
Hepatic apoptosis can modulate liver fibrosis through TIMP1
pathway. Apoptosis. 18:566–577. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sookoian S, Castaño GO, Scian R, Gianotti
Fernández T, Dopazo H, Rohr C, Gaj G, Martino San J, Sevic I,
Flichman D and Pirola CJ: Serum aminotransferases in nonalcoholic
fatty liver disease are a signature of liver metabolic
perturbations at the amino acid and Krebs cycle level. Am J Clin
Nutr. 103:422–434. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Swan EJ, Maxwell AP and Mcknight AJ:
Distinct methylation patters in genes that affect mitochondrial
function are associated with kidney disease in blood-derived DNA
from individuals with type 1 diabetes. Diabet Med. 32:1110–1115.
2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kenney SP and Meng XJ: Identification and
fine mapping of nuclear and nucleolar localization signals within
the human ribosomal protein S17. Plos One. 10:e01243962015.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Watanabe H, Takehana K, Date M, Shinozaki
T and Raz A: Tumor cell autocrine motility factor is the
neuroleukin/phosphohexose isomerase polypeptide. Cancer Res.
56:2960–2963. 1996.PubMed/NCBI
|
35
|
Lindsley DL, Sandler L, Baker BS,
Carpenter AT, Denell RE, Hall JC, Jacobs PA, Miklos GL, Davis BK,
Gethmann RC, et al: Segmental aneuploidy and the genetic gross
structure of the Drosophila genome. Genetics. 71:157–184.
1972.PubMed/NCBI
|
36
|
Hogeweg P: The roots of bioinformatics in
theoretical biology. PLoS Comput Biol. 7:e10020212011. View Article : Google Scholar : PubMed/NCBI
|
37
|
Dix M and Cravatt B: Global mapping of the
topography and magnitude of proteolytic events in apoptosis. Cell.
134:679–691. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lee MJ, Ye AS, Gardino AK, Heijink AM,
Sorger PK, MacBeath G and Yaffe MB: Sequential application of
anticancer drugs enhances cell death by rewiring apoptotic
signaling networks. Cell. 149:780–794. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Fu LL, Zhou CC, Yao S, Yu JY, Liu B and
Bao JK: Plant lectins: Targeting programmed cell death pathways as
antitumor agents. Int J Biochem Cell B. 43:1442–1449. 2011.
View Article : Google Scholar
|
40
|
Pellicoro A, Ramachandran P and Iredale
JP: Reversibility of liver fibrosis. Fibrogenesis Tissue Repair. 5
Suppl 1:S262012.PubMed/NCBI
|
41
|
Rui L: Energy metabolism in the liver.
Compr Physiol. 4:177–197. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhou YY, Cheng CL, Baranenko D, Wang JP,
Li YZ and Lu WH: Effects of acanthopanax senticosus on brain injury
induced by simulated spatial radiation in mouse model based on
pharmacokinetics and comparative proteomics. Int J Mol Sci.
19:E1592018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wan XP, Xie P, Bu Z and Zou XT: Changes in
hepatic glucose and lipid metabolism-related parameters in domestic
pigeon (Columba livia) during incubation and chick rearing. J Anim
Physiol Anim Nutr (Berl). 102:e558–e568. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Volarević S and Thomas G: Role of S6
phosphorylation and S6 kinase in cell growth. Prog Nucleic Acid Res
Mol Biol. 65:101–127. 2000. View Article : Google Scholar
|
45
|
Volarevic S, Stewart MJ, Ledermann B,
Zilberman F, Terracciano L, Montini E, Grompe M, Kozma SC and
Thomas G: Proliferation, but not growth, blocked by conditional
deletion of 40S ribosomal protein S6. Science. 288:2045–2047. 2000.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon
M and Vousden KH: Regulation of HDM2 activity by the ribosomal
protein L11. Cancer Cell. 3:577–587. 2003. View Article : Google Scholar : PubMed/NCBI
|
47
|
Chen FW and Ioannou YA: Ribosomal proteins
in cell proliferation and apoptosis. Int Rev Immunol. 18:429–448.
1999. View Article : Google Scholar : PubMed/NCBI
|
48
|
Qin AP, Zhang HL and Qin ZH: Mechanisms of
lysosomal proteases participating in cerebral ischemia-induced
neuronal death. Neurosci Bull. 24:117–123. 2008. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wang H, Peng R, Chen X, Jia R, Huang C,
Huang Y, Xia L and Guo G: Effect of HK2, PKM2 and LDHA on Cetuximab
efficacy in metastatic colorectal cancer. Oncol Lett. 15:5553–5560.
2018.PubMed/NCBI
|
50
|
Wolf A, Agnihotri S, Munoz D and Guha A:
Developmental profile and regulation of the glycolytic enzyme
hexokinase 2 in normal brain and glioblastoma multiforme. Neurobiol
Dis. 44:84–91. 2011. View Article : Google Scholar : PubMed/NCBI
|
51
|
Ong LC, Jin Y, Song IC, Yu S, Zhang K and
Chow PK: 2-[18F]-2-deoxy-D-glucose (FDG) uptake in human tumor
cells is related to the expression of GLUT-1 and hexokinase II.
Acta Radiol. 49:1145–1153. 2009. View Article : Google Scholar
|
52
|
Goel A, Mathupala SP and Pedersen PL:
Glucose metabolism in cancer. Evidence that demethylation events
play a role in activating type II hexokinase gene expression. J
Biol Chem. 278:15333–15340. 2015. View Article : Google Scholar
|
53
|
Wolf A, Agnihotri S, Micallef J, Mukherjee
J, Sabha N, Cairns R, Hawkins C and Guha A: Hexokinase 2 is a key
mediator of aerobic glycolysis and promotes tumor growth in human
glioblastoma multiforme. J Exp Med. 208:313–326. 2011. View Article : Google Scholar : PubMed/NCBI
|
54
|
Pedersen PL, Mathupala S, Rempel A,
Geschwind JF and Ko YH: Mitochondrial bound type II hexokinase: A
key player in the growth and survival of many cancers and an ideal
prospect for therapeutic intervention. Biochim Biophys Acta.
1555:14–20. 2002. View Article : Google Scholar : PubMed/NCBI
|
55
|
Pastorino JG and Hoek JB: Hexokinase II:
The integration of energy metabolism and control of apoptosis. Curr
Med Chem. 10:1535–1551. 2003. View Article : Google Scholar : PubMed/NCBI
|
56
|
Mathupala SP, Ko YH and Pedersen PL:
Hexokinase II: Cancer's double-edged sword acting as both
facilitator and gatekeeper of malignancy when bound to
mitochondria. Oncogene. 25:4777–4786. 2006. View Article : Google Scholar : PubMed/NCBI
|
57
|
Jae HJ, Jin WC, Park HS, Lee MJ, Lee KC,
Kim HC, Yoon JH, Chung H and Park JH: The antitumor effect and
hepatotoxicity of a hexokinase II inhibitor 3-bromopyruvate: In
vivo investigation of intraarterial administration in a rabbit VX2
hepatoma model. Korean J Radiol. 10:596–603. 2009. View Article : Google Scholar : PubMed/NCBI
|
58
|
Liotta LA, Mandler R, Murano G, Katz DA,
Gordon RK, Chiang PK and Schiffmann E: Tumor cell autocrine
motility factor. Proc Natl Acad Sci USA. 83:3302–3306. 1986.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Ho JC, Cheung ST, Patil M, Chen X and Fan
ST: Increased expression of glycosyl-phosphatidylinositol anchor
attachment protein 1 (GPAA1) is associated with gene amplification
in hepatocellular carcinoma. Int J Cancer. 119:1330–1337. 2006.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Yu FL, Liao MH, Lee JW and Shih WL:
Induction of hepatoma cells migration by phosphoglucose
isomerase/autocrine motility factor through the upregulation of
matrix metalloproteinase-3. Biochem Biophys Res Commun. 314:76–82.
2004. View Article : Google Scholar : PubMed/NCBI
|
61
|
Scott RC, Juhász G and Neufeld TP: Direct
induction of autophagy by Atg1 inhibits cell growth and induces
apoptotic cell death. Curr Biol. 17:1–11. 2007. View Article : Google Scholar : PubMed/NCBI
|
62
|
Crighton D, Wilkinson S, O'Prey J, Syed N,
Smith P, Harrison PR, Gasco M, Garrone O, Crook T and Ryan KM:
DRAM, a p53-induced modulator of autophagy, is critical for
apoptosis. Cell. 126:121–134. 2006. View Article : Google Scholar : PubMed/NCBI
|
63
|
Mizushima N, Levine B, Cuervo AM and
Klionsky DJ: Autophagy fights disease through cellular
self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI
|
64
|
Liang ZQ, Wang X, Li LY, Wang Y, Chen RW,
Chuang DM, Chase TN and Qin ZH: Nuclear factor-kappaB-dependent
cyclin D1 induction and DNA replication associated with
N-methyl-D-aspartate receptor-mediated apoptosis in rat striatum. J
Neurosci Res. 85:1295–1309. 2007. View Article : Google Scholar : PubMed/NCBI
|
65
|
Chen JW, Pan W, D'Souza MP and August JT:
Lysosome-associated membrane proteins: Characterization of LAMP-1
of macrophage P388 and mouse embryo 3T3 cultured cells. Arch
Biochem Biophys. 239:574–586. 1985. View Article : Google Scholar : PubMed/NCBI
|
66
|
Chen JW, Madamanchi N, Madamanchi NR,
Trier TT and Keherly MJ: Lamp-1 is upregulated in human
glioblastoma cell lines induced to undergo apoptosis. J Biomed Sci.
8:365–374. 2001. View Article : Google Scholar : PubMed/NCBI
|
67
|
Ray PS, Arif A and Fox PL: Macromolecular
complexes as depots for releasable regulatory proteins. Trends
Biochem Sci. 32:158–164. 2007. View Article : Google Scholar : PubMed/NCBI
|
68
|
Jewett MC, Fritz BR, Timmerman LE and
Church GM: In vitro integration of ribosomal RNA synthesis,
ribosome assembly, and translation. Mol Syst Biol. 9:6782013.
View Article : Google Scholar : PubMed/NCBI
|
69
|
Draptchinskaia N, Gustavsson P, Andersson
B, Pettersson M, Willig TN, Dianzani I, Ball S, Tchernia G, Klar J,
Matsson H, et al: The gene encoding ribosomal protein S19 is
mutated in Diamond-Blackfan anaemia. Nat Genet. 21:169–175. 1999.
View Article : Google Scholar : PubMed/NCBI
|
70
|
Fisher EMC, Beer-Romero P, Brown LG,
Ridley A, McNeil JA, Lawrence JB, Willard HF, Bieber FR and Page
DC: Homologous ribosomal protein genes on the human X and Y
chromosomes: Escape from X inactivation and possible implications
for turner syndrome. Cell. 63:1205–1218. 1990. View Article : Google Scholar : PubMed/NCBI
|
71
|
O'Brien TW, O'Brien BJ and Norman RA:
Nuclear MRP genes and mitochondrial disease. Gene. 354:147–151.
2005. View Article : Google Scholar : PubMed/NCBI
|
72
|
Ruggero D and Pandolfi PP: Does the
ribosome translate cancer? Nat Rev Cancer. 3:179–192. 2003.
View Article : Google Scholar : PubMed/NCBI
|