1
|
Zhao J, Zhang ZR, Zhao N, Ma BA and Fan
QY: VEGF silencing inhibits human osteosarcoma angiogenesis and
promotes cell apoptosis via PI3K/AKT signaling pathway. Int J Clin
Exp Med. 8:12411–12417. 2015.PubMed/NCBI
|
2
|
Duan J, Hu H, Feng L, Yang X and Sun Z:
Silica nanoparticles inhibit macrophage activity and angiogenesis
via VEGFR2-mediated MAPK signaling pathway in zebrafish embryos.
Chemosphere. 183:483–490. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kim BS, Park JY, Kang HJ, Kim HJ and Lee
J: Fucoidan/FGF-2 induces angiogenesis through JNK- and
p38-mediated activation of AKT/MMP-2 signalling. Biochem Biophys
Res Commun. 450:1333–1338. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hasan SS, Tsaryk R, Lange M, Wisniewski L,
Moore JC, Lawson ND, Wojciechowska K, Schnittler H and Siekmann AF:
Endothelial Notch signalling limits angiogenesis via control of
artery formation. Nat Cell Biol. 19:928–940. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Xu H, Zhang Y, Peña MM, Pirisi L and Creek
KE: Six1 promotes colorectal cancer growth and metastasis by
stimulating angiogenesis and recruiting tumor-associated
macrophages. Carcinogenesis. 38:281–292. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Malecic N and Young HS: Excessive
angiogenesis associated with psoriasis as a cause for
cardiovascular ischaemia. Exp Dermatol. 26:299–304. 2017.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Lu Y, Yu SS, Zong M, Fan SS, Lu TB, Gong
RH, Sun LS and Fan LY: Glucose-6-phosphate isomerase (G6PI)
mediates hypoxia-induced angiogenesis in rheumatoid arthritis. Sci
Rep. 7:402742017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Abu E, l-Asrar AM, Struyf S, Mohammad G,
Gouwy M, Rytinx P, Siddiquei MM, Hernández C, Alam K, Mousa A, De
Hertogh G, et al: Osteoprotegerin is a new regulator of
inflammation and angiogenesis in proliferative diabetic
retinopathy. Invest Ophthalmol Vis Sci. 58:3189–3201. 2017.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Rakhila H, Al-Akoum M, Bergeron ME,
Leboeuf M, Lemyre M, Akoum A and Pouliot M: Promotion of
angiogenesis and proliferation cytokines patterns in peritoneal
fluid from women with endometriosis. J Reprod Immunol. 116:1–6.
2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
OH WK, McDermott D, Porta C, Levy A,
Elaidi R, Scotte F, Hawkins R, Castellano D, Bellmunt J, Rha SY, et
al: Angiogenesis inhibitor therapies for advanced renal cell
carcinoma: Toxicity and treatment patterns in clinical practice
from a global medical chart review. Int J Oncol. 44:5–16. 2014.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Motzer RJ, Porta C, Vogelzang NJ,
Sternberg CN, Szczylik C, Zolnierek J, Kollmannsberger C, Rha SY,
Bjarnason GA, Melichar B, et al: Dovitinib versus sorafenib for
third-line targeted treatment of patients with metastatic renal
cell carcinoma: An open-label, randomised phase 3 trial. Lancet
Oncol. 15:286–296. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Patridge E, Gareiss P, Kinch MS and Hoyer
D: An analysis of FDA-approved drugs: Natural products and their
derivatives. Drug Discov Today. 21:204–207. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rathinasamy VS, Paneerselvan N and
Ragunathan M: Effect of genistein on regenerative angiogenesis
using zebrafish as model organism. Biomed Prev Nutri. 4:469–474.
2014. View Article : Google Scholar
|
14
|
Song CX, Song SL, Liang H and Liu X:
Effect of camptothecin on the embryonic development and
angiogenesis of zebrafish embryos. Adv Mater Res. 750–752:1–1475.
2013.
|
15
|
Liang F, Han Y, Gao H, Xin S, Chen S, Wang
N, Wei Q, Zhong H, Lin S, Yao X and Li S: Kaempferol identified by
zebrafish assay and fine fractionations strategy from dysosma
versipellis inhibits angiogenesis through VEGF and FGF pathways.
Sci Rep. 5:144682015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yang GW, Jiang JS and Lu WQ: Ferulic acid
exerts anti-angiogenic and anti-tumor activity by targeting
fibroblast growth factor receptor 1-mediated angiogenesis. Int J
Mol Sci. 16:24011–24031. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhao D, Qin C, Fan X, Li Y and Gu B:
Inhibitory effects of quercetin on angiogenesis in larval zebrafish
and human umbilical vein endothelial cells. Eur J Pharmacol.
723:360–367. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Pantel J, Williams SY, Mi D, Sebag J,
Corbin JD, Weaver CD and Cone RD: Development of a high throughput
screen for allosteric modulators of melanocortin-4 receptor
signaling using a real time cAMP assay. Eur J Pharmacol.
660:139–147. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Cross LM, Cook MA, Lin S, Chen JN and
Rubinstein AL: Rapid analysis of angiogenesis drugs in a live
fluorescent zebrafish assay. Arterioscler Thromb Vasc Biol.
23:911–912. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pakes SP: Adequate veterinary care as
viewed by the American Association for Accreditation of Laboratory
Animal Care. J Am Vet Med Assoc. 168:519–521. 1976.PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Yeh JR, Munson KM, Elagib KE, Goldfarb AN,
Sweetser DA and Peterson RT: Discovering chemical modifiers of
oncogene-regulated hematopoietic differentiation. Nat Chem Biol.
5:236–243. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Srivastava P and Panda D: Rotenone
inhibits mammalian cell proliferation by inhibiting microtubule
assembly through tubulin binding. FEBS J. 274:4788–4801. 2007.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Ishido M and Suzuki J: Inhibition by
rotenone of mesencephalic neural stem-cell migration in a
neurosphere assay in vitro. Toxicol In Vitro. 24:552–557. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang L, Yao K, Fan Y, He P, Wang X, Hu W
and Chen Z: Carnosine protects brain microvascular endothelial
cells against rotenone-induced oxidative stress injury through
histamine H1 and H2 receptors in vitro. Clin
Exp Pharmacol Physiol. 39:1019–1025. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hatanaka K, Lanahan AA, Murakami M and
Simons M: Fibroblast growth factor signaling potentiates
VE-cadherin stability at adherens junctions by regulating SHP2.
PLoS One. 7:e376002012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sauteur L, Krudewig A, Herwig L,
Ehrenfeuchter N, Lenard A, Affolter M and Belting HG:
Cdh5/VE-cadherin promotes endothelial cell interface elongation via
cortical actin polymerization during angiogenic sprouting. Cell
Rep. 9:504–513. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang B, Xiao Y, Ding BB, Zhang N, Yuan Xb,
Gui L, Qian KX, Duan S, Chen Z, Rao Y and Geng JG: Induction of
tumor angiogenesis by Slit-Robo signaling and inhibition of cancer
growth by blocking Robo activity. Cancer Cell. 4:19–29. 2003.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Fujiwara M, Ghazizadeh M and Kawanami O:
Potential role of the Slit/Robo signal pathway in angiogenesis.
Vasc Med. 11:115–121. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yang XM, Han HX, Sui F, Dai YM, Chen M and
Geng JG: Slit-Robo signaling mediates lymphangiogenesis and
promotes tumor lymphatic metastasis. Biochem Biophys Res Commun.
396:571–577. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liao WX, Laurent LC, Agent S, Hodges J and
Chen DB: Human placental expression of SLIT/ROBO signaling cues:
Effects of preeclampsia and hypoxia. Biol Reprod. 86:1112012.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Rama N, Dubrac A, Mathivet T, Chárthaigh
Ní RA, Genet G, Cristofaro B, Pibouin-Fragner L, Ma L, Eichmann A
and Chédotal A: Slit2 signaling through Robo1 and Robo2 is required
for retinal neovascularization. Nat Med. 21:483–491. 2015.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Banerjee D, Hernandez SL, Garcia A,
Kangsamaksin T, Sbiroli E, Andrews J, Forrester LA, Wei N,
Kadenhechiweshe A, Shawber CJ, et al: Notch suppresses angiogenesis
and progression of hepatic metastases. Cancer Res. 75:1592–1602.
2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lee SH, Lee S, Yang H, Song S, Kim K,
Saunders TL, Yoon JK, Koh GY and Kim I: Notch pathway targets
proangiogenic regulator Sox17 to restrict angiogenesis. Circ Res.
115:215–226. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu J, Deutsch U, Jeong J and Lobe CG:
Constitutive notch signaling in adult transgenic mice inhibits
bFGF-induced angiogenesis and blocks ovarian follicle development.
Genesis. 52:809–816. 2015. View Article : Google Scholar
|
36
|
Butler CT, Reynolds AL, Tosetto M, Dillon
ET, Guiry PJ, Cagney G, O'Sullivan J and Kennedy BN: A quininib
analogue and cysteinyl leukotriene receptor antagonist inhibits
vascular endothelial growth factor (VEGF)-independent Angiogenesis
and exerts an additive antiangiogenic response with bevacizumab. J
Biol Chem. 292:3552–3567. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Webb AH, Gao BT, Goldsmith ZK, Irvine AS,
Saleh N, Lee RP, Lendermon JB, Bheemreddy R, Zhang Q, Brennan RC,
et al: Inhibition of MMP-2 and MMP-9 decreases cellular migration,
and angiogenesis in in vitro models of retinoblastoma. BMC Cancer.
17:4342017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang J, Chen D, Li B, He J, Duan D, Shao D
and Nie M: Fe-MIL-101 exhibits selective cytotoxicity and
inhibition of angiogenesis in ovarian cancer cells via
downregulation of MMP. Sci Rep. 26:261262016. View Article : Google Scholar
|