Bronchopulmonary dysplasia: Pathogenesis and treatment (Review)
- Authors:
- Asfia Banu Pasha
- Xiao-Qing Chen
- Guo‑Ping Zhou
-
Affiliations: Department of Pediatrics, The First Affiliated Hospital, School of International Education, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China - Published online on: September 19, 2018 https://doi.org/10.3892/etm.2018.6780
- Pages: 4315-4321
This article is mentioned in:
Abstract
Khetan R, Hurley M, Spencer S and Bhatt JM: Bronchopulmonary dysplasia within and beyond the neonatal unit. Adv Neonatal Care. 16:17–25; quiz E1-E2. 2016. View Article : Google Scholar : PubMed/NCBI | |
Northway WH Jr, Rosan RC and Porter DY: Pulmonary disease following respiratory therapy of hyaline membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 276:357–368. 1967. View Article : Google Scholar : PubMed/NCBI | |
Bland RD: Neonatal Chronic Lung Disease in the Post-Surfactant Era. Biol Neonate. 88:181–191. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jobe AH and Bancalari E: Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 163:1723–1729. 2001. View Article : Google Scholar : PubMed/NCBI | |
Shahzad T, Radajewski S, Chao CM, Bellusci S and Ehrhardt H: Pathogenesis of bronchopulmonary dysplasia: When inflammation meets organ development. Mol Cell Pediatr. 3:232016. View Article : Google Scholar : PubMed/NCBI | |
Jobe AJ: The new BPD: An arrest of lung development. Pediatr Res. 46:641–643. 1999. View Article : Google Scholar : PubMed/NCBI | |
Rojas MA, Gonzalez A, Bancalari E, Claure N, Poole C and Silva-Neto G: Changing trends in the epidemiology and pathogenesis of neonatal chronic lung disease. J Pediatr. 126:605–610. 1995. View Article : Google Scholar : PubMed/NCBI | |
Charafeddine L, D'Angio CT and Phelps DL: Aytypical chronic lung disease patterns in neonates. Pediatrics. 103:759–765. 1999. View Article : Google Scholar : PubMed/NCBI | |
Smith VC, Zupancic JA, McCormick MC, Croen LA, Greene J, Escobar GJ and Richardson DK: Trends in severe bronchopulmonary dysplasia rates between 1994 and 2002. J Pediatr. 146:469–473. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hussain AN, Siddiqui NH and Stocker JT: Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol. 29:710–717. 1998. View Article : Google Scholar : PubMed/NCBI | |
Coalson JJ: Pathology of Bronchopulmonary Dysplasia. Semin Perinatol. 30:1–184. 2006. View Article : Google Scholar | |
Zhang H, Fang J, Su H and Chen M: Risk factors for bronehopulmonary dysplasiain neonates born at ≤1,500 g (1999–2009). Pediatr Int. 53:915–920. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hansen AR, Barnés CM, Folkman J and Chen M: Maternal preeclampsia predicts the development of bronchopulmonary dysplasia. J Pediatr. 156:532–536. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jakkula M, Le Cras TD, Gebb S, Hirth KP, Tuder RM, Voelkel NF and Abman SH: Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol. 279:L600–L607. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tang JR, Markham NE, Lin YJ, McMurtry IF, Maxey A, Kinsella JP and Abman SH: Inhaled nitric oxide attenuates pulmonary hypertension and improves lung growth in infant rats after neonatal treatment with a VEGF receptor inhibitor. Am J Physiol Lung Cell Mol Physiol. 287:L344–L351. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yen TA, Yang HI, Hsieh WS, Chou HC, Chen CY, Tsou KI and Tsao PN; Taiwan Premature Infant Developmental Collaborative Study Group, : Preeclampsia and the risk of bronchopulmonary dysplasia in VLBW infants: A population based study. PLoS One. 8:e751682013. View Article : Google Scholar : PubMed/NCBI | |
McEvoy CT, Jain L, Schmidt B, Abman S, Bancalari E and Aschner JL: Bronchopulmonary dysplasia: NHLBI workshop on the primary prevention of chronic lung diseases. Ann Am Thorc Soc. 11 Suppl 3:S146–S153. 2014. View Article : Google Scholar | |
Karumanchi SA and Lindheimer MD: Advances in the understanding of eclampsia. Curr Hypertens Rep. 10:305–312. 2008. View Article : Google Scholar : PubMed/NCBI | |
Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP, Sibai BM, Epstein FH, Romero R, Thadhani R, et al: Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med. 355:992–1005. 2006. View Article : Google Scholar : PubMed/NCBI | |
Foidart JM, Schaaps JP, Chantraine F, Munaut C and Lorquet S: Dysregulation of anti-angiogenic agents (sFlt-1, PLGF, and sEndoglin) in preeclampsia-a step forward but not the definitive answer. J Reprod Immunol. 82:106–111. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tsao PN, Wei SC, Su YN, Chou HC, Chen CY and Hsieh WS: Excess soluble fms-like tyrosine kinase 1 and low platelet counts in premature neonates of preeclamptic mothers. Pediatrics. 116:468–472. 2005. View Article : Google Scholar : PubMed/NCBI | |
De Paepe ME, Greco D and Mao Q: Angiogenesis-related gene expression profiling in ventilated preterm human lungs. Exp Lung Res. 36:399–410. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mailaparambil B, Krueger M, Heizmann U, Schlegel K, Heinze J and Heinzmann A: Genetic and epidemiological risk factors in the development of bronchopulmonary dysplasia. Dis Markers. 29:1–9. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lashkari K, Hirose T, Yazdany J, McMeel JW, Kazlauskas A and Rahimi N: Vascular endothelial growth factor and hepatocyte growth factor levels are differentially elevated in patients with advanced retinopathy of prematurity. Am J Pathol. 156:1337–1344. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA and Maniscalco WM: Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 164:1971–1980. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lassus P, Turanlahti M, Heikkilä P, Andersson LC, Nupponen I, Sarnesto A and Andersson S: Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and persistent pulmonary hypertension of the newborn. Am J Respir Crit Care Med. 164:1981–1987. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ambalavanan N, Carlo WA, D'Angio CT, McDonald SA, Das A, Schendel D, Thorsen P and Higgins RD; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network, : Cytokines associated with bronchopulmonary dysplasia or death in extremely low birth weight infants. Pediatrics. 123:1132–1141. 2009. View Article : Google Scholar : PubMed/NCBI | |
Maniscalco WM, Watkins RH, D'Angio CT and Ryan RM: Hyperoxic injury decreases alveolar epithelial cell expression of vascular endothelial growth factor (VEGF) in neonatal rabbit lung. Am J Respir Cell Mol Biol. 16:557–567. 1997. View Article : Google Scholar : PubMed/NCBI | |
Levy BD and Serhan CN: Resolution of acute inflammation in the lung. Annu Rev Physiol. 76:467–492. 2014. View Article : Google Scholar : PubMed/NCBI | |
Le Cras TD, Markham NE, Tuder RM, Voelkel NF and Abman SH: Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am J Physiol Lung Cell Mol Physiol. 283:L555–L562. 2002. View Article : Google Scholar : PubMed/NCBI | |
Speer CP: Inflammation and bronchopulmonary dysplasia: A continuing story. Semin Fetal Neonatal Med. 11:354–362. 2006. View Article : Google Scholar : PubMed/NCBI | |
Watterberg KL, Demers LM, Scott SM and Murphy S: Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics. 97:210–215. 1996.PubMed/NCBI | |
Kramer BW: Antenatal inflammation and lung injury: Prenatal origin of neonatal disease. J Perinatol. 28 Suppl 1:S21–S27. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jonsson B, Rylander M and Faxelius G: Ureaplasma urealyticum, erythromycin and respiratory morbidity in high-risk preterm neonates. Acta Paediatrica. 87:1079–1084. 1998. View Article : Google Scholar : PubMed/NCBI | |
Døllner H, Vatten L, Halgunset J, Rahimipoor S and Austgulen R: Histologic chorioamnionitis and umbilical serum levels of pro-inflammatory cytokines and cytokine inhibitors. BJOG. 109:534–539. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hartling L, Liang Y and Lacaze-Masmonteil T: Chorioamnionitis as a risk factor for bronchopulmonary dysplasia: A systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 97:F8–F17. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jobe AH: Blood cytokines and BPD. J Pediatr. 154:A22009. View Article : Google Scholar | |
Paananen R, Husa AK, Vuolteenaho R, Herva R, Kaukola T and Hallman M: Blood cytokines during the perinatal period in very preterm infants: Relationship of inflammatory response and bronchopulmonary dysplasia. J Pediatr. 154:39–43.e3. 2009. View Article : Google Scholar : PubMed/NCBI | |
Weaver M, Dunn NR and Hogan BL: Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development. 127:2695–2704. 2000.PubMed/NCBI | |
Rothwarf DM and Karin M: The NF-kappa B activation pathway: A paradigm in information transfer from membrane to nucleus. Sci STKE. 1999:RE11999.PubMed/NCBI | |
Benjamin JT, Carver BJ, Plosa EJ, Yamamoto Y, Miller JD, Liu JH, van der Meer R, Blackwell TS and Prince LS: NF-kappaB activation limits airway branching through inhibition of Sp1-mediated fibroblast growth factor-10 expression. J Immunol. 185:4896–4903. 2010. View Article : Google Scholar : PubMed/NCBI | |
Goodman RB, Pugin J, Lee JS and Matthay MA: Cytokine mediated inflammation in acute lung injury. Cytokine Growth Factor Rev. 14:523–535. 2003. View Article : Google Scholar : PubMed/NCBI | |
Belperio JA, Keane MP, Lynch JP III and Strieter RM: The role of cytokines during the pathogenesis of ventilator-associated and ventilator-induced lung injury. Semin Respir Crit Care Med. 27:350–364. 2006. View Article : Google Scholar : PubMed/NCBI | |
Strieter RM, Belperio JA and Keane MP: Cytokines in innate host defense in the lung. J Clin Invest. 109:699–705. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kotecha S, Wilson L, Wangoo A, Silverman M and Shaw RJ: Increase in interleukin (IL)-1 beta and IL-6 in bronchoalveolar lavage fluid obtained from infants with chronic lung disease of prematurity. Pediatr Res. 40:250–256. 1996. View Article : Google Scholar : PubMed/NCBI | |
Baier RJ, Majid A, Parupia H, Loggins J and Kruger TE: CC chemokine concentrations increase in respiratory distress syndrome and correlate with development of bronchopulmonary dysplasia. Pediatr Pulmonol. 37:137–148. 2004. View Article : Google Scholar : PubMed/NCBI | |
Vento G, Capoluongo E, Matassa PG, Concolino P, Vendettuoli V, Vaccarella C, Frezza S, Zuppi C, Romagnoli C and Ameglio F: Serum levels of seven cytokines in premature ventilated newborns: Correlations with old and new forms of bronchopulmonary dysplasia. Intensive Care Med. 32:723–730. 2006. View Article : Google Scholar : PubMed/NCBI | |
Viscardi RM, Muhumuza CK, Rodriguez A, Fairchild KD, Sun CC, Gross GW, Campbell AB, Wilson PD, Hester L and Hasday JD: Inflammatory markers in intrauterine and fetal blood and cerebrospinal fluid compartments are associated with adverse pulmonary and neurologic outcomes in preterm infants. Pediatr Res. 55:1009–1017. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kotecha S, Wangoo A, Silverman M and Shaw RJ: Increase in the concentration of transforming growth factor beta-1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity. J Pediatr. 128:464–469. 1996. View Article : Google Scholar : PubMed/NCBI | |
Gauldie J, Galt T, Bonniaud P, Robbins C, Kelly M and Warburton D: Transfer of the active form of transforming growth factor-beta1 gene to newborn rat lung induces changes consistent with bronchopulmonary dysplasia. Am J Pathol. 163:2575–2584. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ichiba H, Saito M and Yamano T: Amniotic fluid transforming growth factor-beta1 and the risk for the development of neonatal bronchopulmonary dysplasia. Neonatology. 96:156–161. 2009. View Article : Google Scholar : PubMed/NCBI | |
Buczynski BW, Maduekwe ET and O'Reilly MA: The role of hyperoxia in the pathogenesis of experimental BPD. Semin Perinatol. 37:69–78. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bonikos DS, Benson KG and Northway WH Jr: Oxygen toxicity in the newborn. The effect of chronic continuous 100 percent oxygen exposure on the lung of newborn mice. Am J Pathol. 85:623–650. 1976.PubMed/NCBI | |
Crapo JD, Peters-Golden M, Marsh-Salin J and Shelburne JS: Pathologic changes in the lungs of oxygen-adapted rats: A morphometric analysis. Lab Invest. 39:640–653. 1978.PubMed/NCBI | |
Dasgupta C, Sakurai R, Wang Y, Guo P, Ambalavanan N, Torday JS and Rehan VK: Hyperoxia-induced neonatal rat lung injury involves activation of TGF-{beta} and Wnt signaling and is protected by rosiglitazone. Am J Physiol Lung Cell Mol Physiol. 296:L1031–L1041. 2009. View Article : Google Scholar : PubMed/NCBI | |
Warner BB, Stuart LA, Papes RA and Wispé JR: Functional and pathological effects of prolonged hyperoxia in neonatal mice. Am J Physiol. 275:L110–L117. 1998.PubMed/NCBI | |
Tullus K, Noack GW, Burman LG, Nilsson R, Wretlind B and Brauner A: Elevated cytokine levels in tracheobronchial aspirate fluids from ventilator treated neonates with bronchopulmonary dysplasia. Eur J Pediatr. 155:112–116. 1996. View Article : Google Scholar : PubMed/NCBI | |
Kraybill EN, Runyan DK, Bose CL and Khan JH: Risk factors for chronic lung disease in infants with birth weights of 751 to 1000 grams. J Pediatr. 115:115–120. 1989. View Article : Google Scholar : PubMed/NCBI | |
Jobe AH, Hillman N, Polglase G, Kramer BW, Kallapur S and Pillow J: Injury and inflammation from resuscitation of the preterm infant. Neonatology. 94:190–196. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wheeler K, Klingenberg C, McCallion N, Morley CJ and Davis PG: Volume-targeted versus pressure-limited ventilation in the neonate. Cochrane Database Syst. Rev. 10:CD0036662010. | |
Björklund LJ, Ingimarsson J, Curstedt T, John J, Robertson B, Werner O and Vilstrup CT: Manual ventilation with a few large breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lungs. Pediatr Res. 42:348–355. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wheeler K, Klingenberg C, McCallion N, Morley CJ and Davis PG: Volume-targeted versus pressure-limited ventilation in the neonate. Cochrane Database Syst Rev. 10:CD0036662010. | |
Lista G, Colnaghi M, Castoldi F, Condò V, Reali R, Compagnoni G and Mosca F: Impact of targeted-volume ventilation on lung inflammatory response in preterm infants with respiratory distress syndrome (RDS). Pediatr Pulmonol. 37:510–514. 2004. View Article : Google Scholar : PubMed/NCBI | |
Courtney SE, Durand DJ, Asselin JM, Hudak ML, Aschner JL and Shoemaker CT; Neonatal Ventilation Study Group, : High-frequency oscillatory ventilation versus conventional mechanical ventilation for very-low-birth-weight infants. N Engl J Med. 347:643–652. 2002. View Article : Google Scholar : PubMed/NCBI | |
Clyman RI: The role of patent ductus arteriosus and its treatments in the development of bronchopulmonary dysplasia. Semin Perinatol. 37:102–107. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bancalari E, Claure N and Gonzalez A: Patent ductus arteriosus and respiratory outcome in premature infants. Biol Neonate. 88:192–201. 2005. View Article : Google Scholar : PubMed/NCBI | |
Alpan G, Mauray F and Clyman RI: Effect of petent ductus arteriosus on water accumulation and protein permeability in the lungs of mechanically ventilated premature lambs. Pediatr Res. 26:570–575. 1989. View Article : Google Scholar : PubMed/NCBI | |
Chorne N, Leonard C, Piecuch R and Clyman RI: Patent ductus arteriosus and its treatment as risk factors for neonatal and neurodevelopmental morbidity. Pediatrics. 119:1165–1174. 2007. View Article : Google Scholar : PubMed/NCBI | |
Balasubramaniam V, Mervis CF, Maxey AM, Markham NE and Abman SH: Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: Implications for the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 292:L1073–L1084. 2007. View Article : Google Scholar : PubMed/NCBI | |
van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J, Bouchentouf M, Rey-Parra GJ, Galipeau J, Haromy A, Eaton F, et al: Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med. 180:1131–1142. 2009. View Article : Google Scholar : PubMed/NCBI | |
Javed MJ, Mead LE, Prater D, Bessler WK, Foster D, Case J, Goebel WS, Yoder MC, Haneline LS and Ingram DA: Endothelial colony forming cells and mesenchymal stem cells are enriched at different gestational ages in human umbilical cord blood. Pediatr Res. 64:68–73. 2008. View Article : Google Scholar : PubMed/NCBI | |
van Hinsbergh VW and Rabelink TJ: FGFR1 and the Bloodline of the vasculature. Arterioscler Thromb Vasc Biol. 25:883–886. 2005. View Article : Google Scholar : PubMed/NCBI | |
Borghesi A, Massa M, Campanelli R, Bollani L, Tzialla C, Figar TA, Ferrari G, Bonetti E, Chiesa G, de Silvestri A, et al: Circulating endothelial progenitor cells in preterm infants with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 180:540–546. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pavlovic J, Papagaroufalis C, Xanthou M, Liu W, Fan R, Thomas NJ, Apostolidou I, Papathoma E, Megaloyianni E, DiAngelo S and Floros J: Genetic variants of surfactant proteins A, B, C and D in bronchopulmonary dysplasia. Dis Markers. 22:277–291. 2006. View Article : Google Scholar : PubMed/NCBI | |
Woodgate PG and Davies MW: Permissive hypercapnia for the prevention of morbidity and mortality in mechanically ventilated newborn infants. Cochrane Database Syst Rev: CD002061. 2001. View Article : Google Scholar | |
Van Marter LJ, Allred EN, Pagano M, Sanocka U, Parad R, Moore M, Susser M, Paneth N and Leviton A: Do clinical markers of barotrauma and oxygen toxicity explain interhospital variation in rates of chronic lung disease? The Neonatology Committee for the Developmental Network. Pediatrics. 105:1194–1201. 2000. View Article : Google Scholar : PubMed/NCBI | |
Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM and Carlin JB; COIN Trial Investigators, : Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med. 358:700–708. 2008. View Article : Google Scholar : PubMed/NCBI | |
SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network, . Finer NN, Carlo WA, Walsh MC, Rich W, Gantz MG, Laptook AR, Yoder BA, Faix RG, Das A, et al: Early CPAP versus surfactant in extremely preterm infants. N Engl J Med. 362:1970–1979. 2010. View Article : Google Scholar : PubMed/NCBI | |
Darlow BA and Graham PJ: Vitamin A supplementation for preventing morbidity and mortality in very low birthweight infants. Cochrane Database Syst Rev: CD000501. 2002. View Article : Google Scholar | |
Jefferies AL: Postnatal corticosteroids to treat or prevent chronic lung disease in preterm infants. Paediatr Child Health. 17:573–574. 2012.(In English, French). View Article : Google Scholar : PubMed/NCBI | |
Yoder MC Jr, Chua R and Tepper R: Effect of dexamethasone on pulmonary inflammation and pulmonary function of ventilator-dependent infants with bronchopulmonary dysplasia. Am Rev Respir Dis. 143:1044–1048. 1991. View Article : Google Scholar : PubMed/NCBI | |
Halliday HL: Clinical trials of postnatal corticosteroids: Inhaled and systemic. Biol Neonate. 76 Suppl 1:S29–S40. 1999. View Article : Google Scholar | |
Tschanz SA, Damke BM and Burri PH: Influence of postnatally administered glucocorticoids on rat lung growth. Biol Neonate. 68:229–245. 1995. View Article : Google Scholar : PubMed/NCBI | |
Jobe AH: Postnatal corticosteroids for preterm infants-do what we say, not what we do. N Engl J Med. 350:1349–1351. 2004. View Article : Google Scholar : PubMed/NCBI | |
Garland JS, Alex CP, Pauly TH, Whitehead VL, Brand J, Winston JF, Samuels DP and McAuliffe TL: A three-day course of dexamethasone therapy to prevent chronic lung disease in ventilated neonates: A randomized trial. Pediatrics. 104:91–99. 1999. View Article : Google Scholar : PubMed/NCBI | |
Committee on Fetus and Newborn: Postnatal corticosteroids to treat or prevent chronic lung disease in preterm infants. Pediatrics. 109:330–338. 2002. View Article : Google Scholar : PubMed/NCBI | |
Doyle LW, Halliday HL, Ehrenkranz RA, Davis PG and Sinclair JC: Impact of postnatal systemic corticosteroids on mortality and cerebral palsy in preterm infants: Effect modification by risk for chronic lung disease. Pediatrics. 115:655–661. 2005. View Article : Google Scholar : PubMed/NCBI | |
Onland W, Offringa M, De Jaegere AP and van Kaam AH: Finding the optimal postnatal dexamethasone regimen for preterm infants at risk of bronchopulmonary dysplasia: A systematic review of placebo controlled trials. Pediatrics. 123:367–377. 2009. View Article : Google Scholar : PubMed/NCBI | |
Baud O, Maury L, Lebail F, Ramful D, El Moussawi F, Nicaise C, Zupan-Simunek V, Coursol A, Beuchée A, Bolot P, et al: Effect of early low-dose hydrocortisone on survival without bronchopulmonary dysplasia in extremely preterm infants (PREMILOC): A double-blind, placebo-controlled, multicentre, randomised trial. Lancet. 387:1827–1836. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mercier JC, Hummler H, Durrmeyer X, Sanchez-Luna M, Carnielli V, Field D, Greenough A, Van Overmeire B, Jonsson B, Hallman M, et al: Inhaled nitric oxide for prevention of bronchopulmonary dysplasia in premature babies (EUNO): A randomised controlled trial. Lancet. 376:346–354. 2010. View Article : Google Scholar : PubMed/NCBI | |
Watterberg KL, Gerdes JS, Cole CH, Aucott SW, Thilo EH, Mammel MC, Couser RJ, Garland JS, Rozycki HJ, Leach CL, et al: Prophylaxis of early adrenal insufficiency to prevent bronchopulmonary dysplasia: A multicenter trial. Pediatrics. 114:1649–1657. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rademaker KJ, Uiterwaal CS, Groenendaal F, Venema MM, van Bel F, Beek FJ, van Haastert IC, Grobbee DE and de Vries LS: Neonatal hydrocortisone treatment: neurodevelopmental outcome and MRI at school age in preterm-born children. J Pediatr. 150:351–357. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lister P, Iles R, Shaw B and Cucharme F: Inhaled steroids for neonatal chronic lung disease. Cochrane Database Syst Rev. 4:CD0023112000. | |
Shah V, Ohlsson A, Halliday HL and Dunn M: Early administration of inhaled corticosteroids for preventing chronic lung disease in ventilated very low birth weight preterm neonates. Cochrane Database Syst Rev. 16:CD0019692012. | |
Cole CH, Colton T, Shah BL, Abbasi S, MacKinnon BL, Demissie S and Frantz ID III: Early inhaled glucocorticoid therapy to prevent bronchopulmonary dysplasia. N Engl J Med. 340:1005–1010. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lister P, Iles R, Shaw B and Ducharme F: Inhaled steroids for neonatal chronic lung disease. Cochrane Database Syst Rev: CD002311. 2000. | |
Cole FS, Alleyne C, Barks JD, Boyle RJ, Carroll JL, Dokken D, Edwards WH, Georgieff M, Gregory K, Johnston MV, et al: Inhaled nitric oxide therapy for premature infants. NIH Consens State Sci Statements. 29:272010. | |
Poonyagariyagorn HK, Metzger S, Dikeman D, Mercado AL, Malinina A, Calvi C, McGrath-Morrow S and Neptune ER: Superoxide dismutase 3 dysregulation in a murine model of neonatal lung injury. Am J Respir Cell Mol Biol. 51:380–390. 2014. View Article : Google Scholar : PubMed/NCBI | |
Davis JM, Rosenfeld WN, Sanders RJ and Gonenne A: Prophylactic effects of recombinant human superoxide dismutase in neonatal lung injury. J Appl Physiol. 74:2234–2241. 1993. View Article : Google Scholar : PubMed/NCBI | |
Davis JM, Parad RB, Michele T, Allred E, Price A and Rosenfeld W; North American Recombinant Human CuZnSOD Study Group, : Pulmonary outcome at 1 year corrected age in premature infants treated at birth with recombinant CuZn superoxide dismutase. Pediatrics. 111:469–476. 2003. View Article : Google Scholar : PubMed/NCBI | |
Vosdoganes P, Lim R, Moss TJM and Wallace EM: Cell therapy: A novel treatment approach for bronchopulmonary dysplasia. Pediatrics. 130:727–737. 2012. View Article : Google Scholar : PubMed/NCBI |