1
|
Giusti-Rodríguez P and Sullivan PF: The
genomics of schizophrenia: Update and implications. J Clin Invest.
123:4557–4563. 2013. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Ruzicka WB, Subburaju S and Benes FM:
Circuit- and diagnosis-specific DNA methylation changes at
γ-aminobutyric acid-related genes in postmortem human hippocampus
in schizophrenia and bipolar disorder. JAMA Psychiatry. 72:541–551.
2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Insel TR: Rethinking schizophrenia.
Nature. 468:187–193. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Harrison PJ: Recent genetic findings in
schizophrenia and their therapeutic relevance. J Psychopharmacol.
29:85–96. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Quednow BB, Brzózka MM and Rossner MJ:
Transcription factor 4 (TCF4) and schizophrenia: Integrating the
animal and the human perspective. Cell Mol Life Sci. 71:2815–2835.
2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hosák L, Silhan P and Hosáková J:
Genome-wide association studies in schizophrenia, and potential
etiological and functional implications of their results. Acta Med
(Hradec Kralove). 55:3–11. 2012. View Article : Google Scholar
|
7
|
Sandin S, Lichtenstein P, Kuja-Halkola R,
Larsson H, Hultman CM and Reichenberg A: The familial risk of
autism. JAMA. 311:1770–1777. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Roth TL, Lubin FD, Sodhi M and Kleinman
JE: Epigenetic mechanisms in schizophrenia. Biochim Biophys Acta.
1790:869–877. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ripke S, Neale BM, Corvin A, Walters JT,
Farh KH, Holmans PA, Lee P, Buliksullivan B, Collier DA and Huang
H; Schizophrenia Working Group of the Psychiatric Genomics
Consortium, : Biological insights from 108 schizophrenia-associated
genetic loci. Nature. 511:421–427. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Goodbourn PT, Bosten JM, Bargary G, Hogg
RE, Lawrance-Owen AJ and Mollon JD: Variants in the 1q21 risk
region are associated with a visual endophenotype of autism and
schizophrenia. Genes Brain Behav. 13:144–151. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ripke S, O'Dushlaine C, Chambert K, Moran
JL, Kähler AK, Akterin S, Bergen SE, Collins AL, Crowley JJ, Fromer
M, et al: Multicenter Genetic Studies of Schizophrenia Consortium;
Psychosis Endophenotypes International Consortium; Wellcome Trust
Case Control Consortium 2: Genome-wide association analysis
identifies 13 new risk loci for schizophrenia. Nat Genet.
45:1150–1159. 2013. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Schizophrenia Psychiatric Genome-Wide
Association Study (GWAS) Consortium, . Genome-wide association
study identifies five new schizophrenia loci. Nat Genet.
43:969–976. 2011. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Ruderfer DM, Fanous AH, Ripke S, McQuillin
A, Amdur RL, Gejman PV, O'Donovan MC, Andreassen OA, Djurovic S,
Hultman CM, et al: Schizophrenia Working Group of the Psychiatric
Genomics Consortium; Bipolar Disorder Working Group of the
Psychiatric Genomics Consortium; Cross-Disorder Working Group of
the Psychiatric Genomics Consortium: Polygenic dissection of
diagnosis and clinical dimensions of bipolar disorder and
schizophrenia. Mol Psychiatry. 19:1017–1024. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Salavati B, Rajji TK, Price R, Sun Y,
Graff-Guerrero A and Daskalakis ZJ: Imaging-based neurochemistry in
schizophrenia: A systematic review and implications for
dysfunctional long-term potentiation. Schizophr Bull. 41:44–56.
2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Shi Y, Li Z, Xu Q, Wang T, Li T, Shen J,
Zhang F, Chen J, Zhou G, Ji W, et al: Common variants on 8p12 and
1q24.2 confer risk of schizophrenia. Nat Genet. 43:1224–1227. 2011.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Sleiman P, Wang D, Glessner J, Hadley D,
Gur RE, Cohen N, Li Q, Hakonarson H, Sleiman P, Glessner J, et al:
Janssen-CHOP Neuropsychiatric Genomics Working Group: GWAS meta
analysis identifies TSNARE1 as a novel schizophrenia/bipolar
susceptibility locus. Sci Rep. 3:30752013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Stefansson H, Ophoff RA, Steinberg S,
Andreassen OA, Cichon S, Rujescu D, Werge T, Pietiläinen OP, Mors
O, Mortensen PB, et al: Genetic Risk and Outcome in Psychosis
(GROUP): Common variants conferring risk of schizophrenia. Nature.
460:744–747. 2009.PubMed/NCBI
|
18
|
Wang KS, Liu XF and Aragam N: A
genome-wide meta-analysis identifies novel loci associated with
schizophrenia and bipolar disorder. Schizophr Res. 124:192–199.
2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Betcheva ET, Yosifova AG, Mushiroda T,
Kubo M, Takahashi A, Karachanak SK, Zaharieva IT, Hadjidekova SP,
Dimova II, Vazharova RV, et al: Whole-genome-wide association study
in the Bulgarian population reveals HHAT as schizophrenia
susceptibility gene. Psychiatr Genet. 23:11–19. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yue WH, Wang HF, Sun LD, Tang FL, Liu ZH,
Zhang HX, Li WQ, Zhang YL, Zhang Y, Ma CC, et al: Genome-wide
association study identifies a susceptibility locus for
schizophrenia in Han Chinese at 11p11.2. Nat Genet. 43:1228–1231.
2011. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Edwards YJK, Beecham GW, Scott WK, Khuri
S, Bademci G, Tekin D, Martin ER, Jiang Z, Mash DC, ffrench-Mullen
J, et al: Identifying consensus disease pathways in Parkinson's
disease using an integrative systems biology approach. PLoS One.
6:e169172011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Eleftherohorinou H, Wright V, Hoggart C,
Hartikainen AL, Jarvelin MR, Balding D, Coin L and Levin M: Pathway
analysis of GWAS provides new insights into genetic susceptibility
to 3 inflammatory diseases. PLoS One. 4:e80682009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang K, Edmondson AC, Li M, Gao F, Qasim
AN, Devaney JM, Burnett MS, Waterworth DM, Mooser V, Grant SFA, et
al: Pathway-wide association study implicates multiple sterol
transport and metabolism genes in HDL cholesterol regulation. Front
Genet. 2:412011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang J, Duncan D, Shi Z and Zhang B:
WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): Update 2013.
Nucleic Acids Res. 41(W1): W77–W83. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Purcell SM, Moran JL, Fromer M, Ruderfer
D, Solovieff N, Roussos P, O'Dushlaine C, Chambert K, Bergen SE,
Kähler A, et al: A polygenic burden of rare disruptive mutations in
schizophrenia. Nature. 506:185–190. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Manolio TA, Collins FS, Cox NJ, Goldstein
DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR,
Chakravarti A, et al: Finding the missing heritability of complex
diseases. Nature. 461:747–753. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang F, Xu CQ, He Q, Cai JP, Li XC, Wang
D, Xiong X, Liao YH, Zeng QT, Yang YZ, et al: Genome-wide
association identifies a susceptibility locus for coronary artery
disease in the Chinese Han population. Nat Genet. 43:345–349. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Shi Y, Kirwan P, Smith J, Robinson HP and
Livesey FJ: Human cerebral cortex development from pluripotent stem
cells to functional excitatory synapses. Nat Neurosci. 15:477–486,
S1. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Xu Y, Taru H, Jin Y and Quinn CC: SYD-1C,
UNC-40 (DCC) and SAX-3 (Robo) function interdependently to promote
axon guidance by regulating the MIG-2 GTPase. PLoS Genet.
11:e10051852015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tang X and Wadsworth WG: SAX-3 (Robo) and
UNC-40 (DCC) regulate a directional bias for axon guidance in
response to multiple extracellular cues. Plos One. 9:e1100312014.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Shu T, Valentino KM, Seaman C, Cooper HM
and Richards LJ: Expression of the netrin-1 receptor, deleted in
colorectal cancer (DCC), is largely confined to projecting neurons
in the developing forebrain. J Comp Neurol. 416:201–212. 2000.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Shi M, Guo C, Dai JX and Ding YQ: DCC is
required for the tangential migration of noradrenergic neurons in
locus coeruleus of mouse brain. Mol Cell Neurosci. 39:529–538.
2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Cotrufo T, Pérez-Brangulí F, Muhaisen A,
Ros O, Andrés R, Baeriswyl T, Fuschini G, Tarrago T, Pascual M,
Ureña J, et al: A signaling mechanism coupling netrin-1/deleted in
colorectal cancer chemoattraction to SNARE-mediated exocytosis in
axonal growth cones. J Neurosci. 31:14463–14480. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Teichmann HM and Shen K: UNC-6 and UNC-40
promote dendritic growth through PAR-4 in Caenorhabditis elegans
neurons. Nat Neurosci. 14:165–172. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Brose K, Bland KS, Wang KH, Arnott D,
Henzel W, Goodman CS, Tessier-Lavigne M and Kidd T: Slit proteins
bind Robo receptors and have an evolutionarily conserved role in
repulsive axon guidance. Cell. 96:795–806. 1999. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chédotal A, Kerjan G and Moreau-Fauvarque
C: The brain within the tumor: New roles for axon guidance
molecules in cancers. Cell Death Differ. 12:1044–1056. 2005.
View Article : Google Scholar : PubMed/NCBI
|
37
|
López-Bendito G, Flames N, Ma L, Fouquet
C, Di Meglio T, Chedotal A, Tessier-Lavigne M and Marín O: Robo1
and Robo2 cooperate to control the guidance of major axonal tracts
in the mammalian forebrain. J Neurosci. 27:3395–3407. 2007.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Marcos-Mondéjar P, Peregrín S, Li JY,
Carlsson L, Tole S and López-Bendito G: The lhx2 transcription
factor controls thalamocortical axonal guidance by specific
regulation of robo1 and robo2 receptors. J Neurosci. 32:4372–4385.
2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Long H, Sabatier C, Ma L, Plump A, Yuan W,
Ornitz DM, Tamada A, Murakami F, Goodman CS and Tessier-Lavigne M:
Conserved roles for Slit and Robo proteins in midline commissural
axon guidance. Neuron. 42:213–223. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Finci L, Zhang Y, Meijers R and Wang JH:
Signaling mechanism of the netrin-1 receptor DCC in axon guidance.
Prog Biophys Mol Biol. 118:153–160. 2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yang Y, Lee WS, Tang X and Wadsworth WG:
Extracellular matrix regulates UNC-6 (netrin) axon guidance by
controlling the direction of intracellular UNC-40 (DCC) outgrowth
activity. PLoS One. 9:e972582014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kulkarni G, Xu Z, Mohamed AM, Li H, Tang
X, Limerick G and Wadsworth WG: Experimental evidence for UNC-6
(netrin) axon guidance by stochastic fluctuations of intracellular
UNC-40 (DCC) outgrowth activity. Biol Open. 2:1300–1312. 2013.
View Article : Google Scholar : PubMed/NCBI
|