1
|
Zeng Z, Huang H, Zhang W, Xiang B, Zhou M,
Zhou Y, Ma J, Yi M, Li X, Li X, et al: Nasopharyngeal carcinoma:
Advances in genomics and molecular genetics. Sci China Life Sci.
54:966–975. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wei WI and Sham JS: Nasopharyngeal
carcinoma. Lancet. 365:2041–2054. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Xiong W, Zeng ZY, Xia JH, Xia K, Shen SR,
Li XL, Hu DX, Tan C, Xiang JJ, Zhou J, et al: A susceptibility
locus at chromosome 3p21 linked to familial nasopharyngeal
carcinoma. Cancer Res. 64:1972–1974. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zeng Z, Zhou Y, Zhang W, Li X, Xiong W,
Liu H, Fan S, Qian J, Wang L, Li Z, et al: Family-based association
analysis validates chromosome 3p21 as a putative nasopharyngeal
carcinoma susceptibility locus. Genet Med. 8:156–160. 2006.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Zeng Z, Huang H, Huang L, Sun M, Yan Q,
Song Y, Wei F, Bo H, Gong Z, Zeng Y, et al: Regulation network and
expression profiles of Epstein-Barr virus-encoded microRNAs and
their potential target host genes in nasopharyngeal carcinomas. Sci
China Life Sci. 57:315–326. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yan Q, Zeng Z, Gong Z, Zhang W, Li X, He
B, Song Y, Li Q, Zeng Y, Liao Q, et al: EBV-miR-BART10-3p
facilitates epithelial-mesenchymal transition and promotes
metastasis of nasopharyngeal carcinoma by targeting BTRC.
Oncotarget. 6:41766–41782. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Song Y, Li X, Zeng Z, Li Q, Gong Z, Liao
Q, Li X, Chen P, Xiang B, Zhang W, et al: Epstein-Barr virus
encoded miR-BART11 promotes inflammation-induced carcinogenesis by
targeting FOXP1. Oncotarget. 7:36783–36799. 2016.PubMed/NCBI
|
9
|
Zeng Z, Fan S, Zhang X, Li S, Zhou M,
Xiong W, Tan M, Zhang W and Li G: Epstein-Barr virus-encoded small
RNA 1 (EBER-1) could predict good prognosis in nasopharyngeal
carcinoma. Clin Transl Oncol. 18:206–211. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Simon MC: Gotta have GATA. Nat Genet.
11:9–11. 1995. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Martin DI, Zon LI, Mutter G and Orkin SH:
Expression of an erythroid transcription factor in megakaryocytic
and mast cell lineages. Nature. 344:444–447. 1990. View Article : Google Scholar : PubMed/NCBI
|
12
|
Molkentin JD: The zinc finger-containing
transcription factors GATA-4, −5, and −6. Ubiquitously expressed
regulators of tissue-specific gene expression. J Biol Chem.
275:38949–38952. 2000. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ayanbule F, Belaguli NS and Berger DH:
GATA factors in gastrointestinal malignancy. World J Surg.
35:1757–1765. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
White RA, Dowler LL, Pasztor LM, Gatson
LL, Adkison LR, Angeloni SV and Wilson DB: Assignment of the
transcription factor GATA4 gene to human chromosome 8 and mouse
chromosome 14: Gata4 is a candidate gene for Ds (disorganization).
Genomics. 27:20–26. 1995. View Article : Google Scholar : PubMed/NCBI
|
15
|
Engels M, Span PN, Mitchell RT, Heuvel
JJTM, Marijnissen-van Zanten MA, van Herwaarden AE, Hulsbergen-van
de Kaa CA, Oosterwijk E, Stikkelbroeck NM, Smith LB, et al: GATA
transcription factors in testicular adrenal rest tumours. Endocr
Connect. 6:866–875. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Huang WY, Heng HH and Liew CC: Assignment
of the human GATA4 gene to 8p23.1-->p22 using fluorescence in
situ hybridization analysis. Cytogenet Cell Genet. 72:217–218.
1996. View Article : Google Scholar : PubMed/NCBI
|
17
|
Perrino C and Rockman HA: GATA4 and the
two sides of gene expression reprogramming. Circ Res. 98:715–716.
2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
McCulley DJ and Black BL: Curr Top Dev
Biol. 100:253–277. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Suzuki YJ: Cell signaling pathways for the
regulation of GATA4 transcription factor: Implications for cell
growth and apoptosis. Cell Signal. 23:1094–1099. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Färkkilä A, Andersson N, Bützow R, Leminen
A, Heikinheimo M, Anttonen M and Unkila-Kallio L: HER2 and GATA4
are new prognostic factors for early-stage ovarian granulosa cell
tumor-a long-term follow-up study. Cancer Med. 3:526–536. 2014.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Lu H, Huang S, Zhang X, Wang D, Zhang X,
Yuan X, Zhang Q and Huang Z: DNA methylation analysis of SFRP2,
GATA4/5, NDRG4 and VIM for the detection of colorectal cancer in
fecal DNA. Oncol Lett. 8:1751–1756. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Takagi K, Moriguchi T, Miki Y, Nakamura Y,
Watanabe M, Ishida T, Yamamoto M, Sasano H and Suzuki T: GATA4
immunolocalization in breast carcinoma as a potent prognostic
predictor. Cancer Sci. 105:600–607. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chia NY, Deng N, Das K, Huang D, Hu L, Zhu
Y, Lim KH, Lee MH, Wu J, Sam XX, et al: Regulatory crosstalk
between lineage-survival oncogenes KLF5, GATA4 and GATA6
cooperatively promotes gastric cancer development. Gut. 64:707–719.
2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yang MH, Wu MZ, Chiou SH, Chen PM, Chang
SY, Liu CJ, Teng SC and Wu KJ: Direct regulation of TWIST by
HIF-1alpha promotes metastasis. Nat Cell Biol. 10:295–305. 2008.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Gumireddy K, Li A, Gimotty PA,
Klein-Szanto AJ, Showe LC, Katsaros D, Coukos G, Zhang L and Huang
Q: KLF17 is a negative regulator of epithelial-mesenchymal
transition and metastasis in breast cancer. Nat Cell Biol.
11:1297–1304. 2009. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Gonzalez DM and Medici D: Signaling
mechanisms of the epithelial-mesenchymal transition. Sci Signal.
7:re82014. View Article : Google Scholar : PubMed/NCBI
|
27
|
van Tuyn J, Atsma DE, Winter EM, van der
Velde-van Dijke I, Pijnappels DA, Bax NA, Knaän-Shanzer S,
Gittenberger-de Groot AC, Poelmann RE, van der Laarse A, et al:
Epicardial cells of human adults can undergo an
epithelial-to-mesenchymal transition and obtain characteristics of
smooth muscle cells in vitro. Stem Cells. 25:271–278. 2007.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Campbell K, Whissell G, Franch-Marro X,
Batlle E and Casanova J: Specific GATA factors act as conserved
inducers of an endodermal-EMT. Dev Cell. 21:1051–1061. 2011.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Han Q, Xu X, Li J, Wang J, Bai L, Wang A,
Wang W and Zhang B: GATA4 is highly expressed in childhood acute
lymphoblastic leukemia, promotes cell proliferation and inhibits
apoptosis by activating BCL2 and MDM2. Mol Med Rep. 16:6290–6298.
2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chan JY, Chow VL, Wong ST and Wei WI:
Surgical salvage for recurrent retropharyngeal lymph node
metastasis in nasopharyngeal carcinoma. Head Neck. 35:1726–1731.
2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kang M, Zhou P, Wei T, Zhao T, Long J, Li
G, Yan H, Feng G, Liu M, Zhu J and Wang R: A novel N staging system
for NPC based on IMRT and RTOG guidelines for lymph node levels:
Results of a prospective multicentric clinical study. Oncol Lett.
16:308–316. 2018.PubMed/NCBI
|
33
|
Kang Y and Massague J:
Epithelial-mesenchymal transitions: Twist in development and
metastasis. Cell. 118:277–279. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Medici D, Hay ED and Olsen BR: Snail and
Slug promote epithelial-mesenchymal transition through
beta-catenin-T-cell factor-4-dependent expression of transforming
growth factor-beta3. Mol Biol Cell. 19:4875–4887. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Alves CC, Carneiro F, Hoefler H and Becker
KF: Role of the epithelial-mesenchymal transition regulator Slug in
primary human cancers. Front Biosci (Landmark Ed). 14:3035–3050.
2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kojc N, Zidar N, Gale N, Poljak M, Fujs
Komlos K, Cardesa A, Höfler H and Becker KF: Transcription factors
Snail, Slug, Twist, and SIP1 in spindle cell carcinoma of the head
and neck. Virchows Arch. 454:549–555. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Preca BT, Bajdak K, Mock K, Lehmann W,
Sundararajan V, Bronsert P, Matzge-Ogi A, Orian-Rousseau V,
Brabletz S, Brabletz T, et al: A novel ZEB1/HAS2 positive feedback
loop promotes EMT in breast cancer. Oncotarget. 8:11530–11543.
2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mahmoud MM, Kim HR, Xing R, Hsiao S,
Mammoto A, Chen J, Serbanovic-Canic J, Feng S, Bowden NP, Maguire
R, et al: Twist1 integrates endothelial responses to flow in
vascular dysfunction and atherosclerosis. Circ Res. 119:450–462.
2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Pan B, Ye Y, Liu H, Zhen J, Zhou H, Li Y,
Qu L, Wu Y, Zeng C and Zhong W: URG11 regulates prostate cancer
cell proliferation, migration, and invasion. Biomed Res Int.
2018:40607282018. View Article : Google Scholar : PubMed/NCBI
|